Publications by authors named "Shohei Mizutani"

Full Monte Carlo (FMC) calculation of dose distribution has been recognized to have superior accuracy, compared with the pencil beam algorithm (PBA). However, since the FMC methods require long calculation time, it is difficult to apply them to routine treatment planning at present. In order to improve the situation, a simplified Monte Carlo (SMC) method has been introduced to the dose kernel calculation applicable to dose optimization procedure for the proton pencil beam scanning.

View Article and Find Full Text PDF

A beam delivery system using a single-radius-beam-wobbling method has been used to form a conformal irradiation field for proton radiotherapy in Japan. A proton beam broadened by the beam-wobbling system provides a non-Gaussian distribution of projection angle different in two mutually orthogonal planes with a common beam central axis, at a certain position. However, the conventional initial beam model for dose calculations has been using an approximation of symmetric Gaussian angular distribution with the same variance in both planes (called here a Gaussian model with symmetric variance (GMSV)), instead of the accurate one.

View Article and Find Full Text PDF

We have developed a novel design method of ridge filters for carbon-ion therapy using a broad-beam delivery system to improve the flatness of a biologically effective dose in the spread-out Bragg peak (SOBP). So far, the flatness of the SOBP is limited to about ±5% for carbon beams since the weight control of component Bragg curves composing the SOBP is difficult. This difficulty arises from using a large number of ridge-bar steps (e.

View Article and Find Full Text PDF