Metal ions participate in various biochemical processes such as electron transport chain, gene transcription, and enzymatic reactions. Furthermore, the aggregation promoting effect of several metal ions on neuronal proteins such as prion, tau, Aβ peptide, and α-synuclein, has been reported. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the detergent-resistant membrane microdomain fraction of the neuronal cell membrane.
View Article and Find Full Text PDFPurpose: Fetuses with persistent cloaca are known to develop urine or meconium backflow into the abdominal cavity caused by obstruction of the common channel, thus leading to fetal peritonitis with fetal ascites. We analyzed the impact of prenatal fetal ascites on postnatal clinical features and management.
Methods: This retrospective single-center cohort study was conducted to compare the perinatal parameters of patients with isolated persistent cloaca who were born and treated at our hospital between 1991 and 2021.
Purpose: To assess the risk factors for surgical site infections (SSIs) post-abdominal surgery in neonates.
Methods: A retrospective, single-center cohort study was conducted using patient data from 2009 to 2018. Patient characteristics and several variables were analyzed to identify independent risk factors for SSI.
Recovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. NAP-22 (also called BASP1 or CAP-23) is a neuron-enriched calmodulin-binding protein and one of the major proteins in the DRM fraction of the neuronal cell membrane. Previous studies showed tight binding activity of NAP-22 to acidic membrane lipids and the self-interaction of NAP-22, i.
View Article and Find Full Text PDFRhodopsin is a G protein-coupled receptor (GPCR) that initiates the phototransduction cascade in retinal disc membrane. Recent studies have suggested that rhodopsin forms highly ordered rows of dimers responsible for single-photon detection by rod photoreceptors. Dimerization is also known to confer to rhodopsin a high affinity for ordered lipids (raftophilicity).
View Article and Find Full Text PDFNeurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant low-density membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM and localizes in the presynaptic region. In order to know the role of NAP-22 in the synaptic transmission, NAP-22 binding proteins in the cytosol were searched with an affinity screening with NAP-22 as a bait and several protein bands were detected.
View Article and Find Full Text PDFNeurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). NAP-22 is one of the major protein components of neuronal DRM. In a previous study, we showed that DRM-derived NAP-22 binds ganglioside and the inhibitory effect of ganglioside to calcineurin (CaN), a neuron-enriched calmodulin-regulated phosphoprotein phosphatase.
View Article and Find Full Text PDFWave-like propagation of [Ca] increases is a remarkable intercellular communication characteristic in astrocyte networks, intercalating neural circuits and vasculature. Mechanically-induced [Ca] increases and their subsequent propagation to neighboring astrocytes in culture is a classical model of astrocyte calcium wave and is known to be mediated by gap junction and extracellular ATP, but the role of each pathway remains unclear. Pharmacologic analysis of time-dependent distribution of [Ca] revealed three distinct [Ca] increases, the largest being in stimulated cells independent of extracellular Ca and inositol 1,4,5-trisphosphate-induced Ca release.
View Article and Find Full Text PDFExtracellular adenosine in the brain, which modulates various physiological and pathological processes, fluctuates in a complicated manner that reflects the circadian cycle, neuronal activity, metabolism, and disease states. The dynamics of extracellular adenosine in the brain are not fully understood, largely because of the lack of simple and reliable methods of measuring time-dependent changes in tissue adenosine distribution. This study describes the development of a biosensor, designated an adenosine sensor cell, expressing adenosine A1 receptor, and a genetically modified G protein.
View Article and Find Full Text PDFCalcium releases of non-excitable cells are generally a combination of oscillatory and non-oscillatory patterns, and factors affecting the calcium dynamics are still to be determined. Here we report the influence of cell density on calcium increase patterns of clonal cell lines. The majority of HeLa cells seeded at 1.
View Article and Find Full Text PDFEvidence increasingly shows that astrocytes play a pivotal role in brain physiology and pathology via calcium dependent processes, thus the characterization of the calcium dynamics in astrocytes is of growing importance. We have previously reported that the epidermal growth factor and basic fibroblast growth factor up-regulate the oscillation of the calcium releases that are induced by stimuli, including glutamate in cultured astrocytes. This calcium oscillation is assumed to involve protein kinase C (PKC), which is activated together with the calcium releases as a consequence of inositol phospholipid hydrolysis.
View Article and Find Full Text PDFRecovery of various signal transduction molecules in the detergent-resistant membrane microdomain (DRM) fraction suggests the importance of this region in cellular functions. Insolubility of the outer leaflet of DRM to the non-ionic detergent is ascribed to the tight association of cholesterol and sphingolipid. Since, poor localization of sphingolipid is observed in the inner leaflet, the physicochemical background of the insolubility of the inner leaflet is hence still an enigma.
View Article and Find Full Text PDFNeurons have well-developed membrane microdomains called "rafts" that are recovered as a detergent-resistant membrane microdomain fraction (DRM). Neuronal tissue-enriched acidic protein of 22 kDa (NAP-22) is one of the major protein components of neuronal DRM. To determine the cellular function of NAP-22, interacting proteins were screened with an immunoprecipitation assay, and calcineurin (CaN) was detected.
View Article and Find Full Text PDFInner-membrane transport is critical to cell function. Rab family GTPases play an important role in vesicle transport. In mammalian cells, Rab5 is reported to be involved in the regulation of endosome formation, phagocytosis and chromosome alignment.
View Article and Find Full Text PDFLipid rafts (detergent-resistant low-density membrane microdomain: DRM) are signal-transducing membrane platforms. In a previous study, we showed maturation-dependent localization of septin in the DRM fraction of rat brain. Mammalian septin is composed with 13-14 isoforms and these isoforms assemble to form rod-shaped hetero-oligomeric complexes.
View Article and Find Full Text PDFSeptin forms a conserved family of cytoskeletal GTP-binding proteins that have diverse roles in protein scaffolding, vesicle trafficking and cytokinesis. There are 14 mammalian septin isoforms and these isoforms assemble into hetero-oligomeric rod-shaped complexes and these short filaments are the basal units to construct higher-order structures such as longer filaments, rings, gauzes or hourglasses. Septin expressed in a eukaryotic expression system forms various structures such as bundles, sheets, helixes, and rings.
View Article and Find Full Text PDFEndocytosis of the synaptic vesicle is a complicated process, in which many proteins and lipids participate. Phosphatidylinositol 4,5-bisphosphate (PIP(2) ) plays important roles in the process, and the dynamic regulation of this lipid is one of the key events. Synaptojanin is a PIP(2) phosphatase, and dephosphorylation of PIP(2) of the clathrin coated-vesicle results in the uncoating of the vesicle.
View Article and Find Full Text PDFPhospholipase C-delta1 (PLCdelta1) is the most fundamental form of the eukaryotic PLC and thought to play important roles in the regulation of cells. We previously reported that PLCdelta1 shuttles between the cytoplasm and nucleus, and an influx of Ca2+ triggers the nuclear import of PLCdelta1 via Ca2+-dependent interaction with importin beta1, although the physiological meaning of this is unclear. Here we have examined the distribution of PLCdelta1 using primary cultures of rat hippocampal neurons.
View Article and Find Full Text PDFOpioid-binding cell adhesion molecule (OBCAM) is a member of the immunoglobulin superfamily. In the present study, we investigated the expression and functional significance of OBCAM in cerebral astrocytes in vitro and in vivo. The confocal microscopic study revealed that the expression of OBCAM was prominent at filopodia and cellular processes of type-1 and -2 astrocytes.
View Article and Find Full Text PDFCell Biochem Funct
October 2009
IgLON cell adhesion molecules (CAMs) belonging to the immunoglobulin superfamily comprise of LAMP, neurotrimin (Ntm), OBCAM, and Kilon. In the present study, we performed the single and double transfection of IgLON gene constructs into hippocampal neurons in vitro and evaluated synaptic number. The quantitative analysis showed that the single over-expression of LAMP or OBCAM increased synaptic number, while the over-expression of Kilon reduced synaptic number and Ntm had no effects.
View Article and Find Full Text PDFNAP-22 is a neuronal protein localized in the presynaptic membrane and synaptic vesicles and recovered in a Triton-insoluble low-density microdomain fraction after biochemical fractionation of the synaptic plasma membrane. NAP-22 organizes membrane microdomains through binding to membrane lipids such as cholesterol, phosphatidylethanolamine, and phosphatidylinositol 4,5-bisphosphate. In this study, NAP-22-binding proteins were screened through the pull-down assay using brain-derived NAP-22 bound to Sepharose 4B.
View Article and Find Full Text PDFKilon is a member of the IgLON family belonging to the immunoglobulin superfamily of cell adhesion molecules. In the present study, we investigated temporal and spatial changes of Kilon expression and its modulatory functions for synapse number using hippocampal cultured neurons. Kilon was observed to localize chiefly at axons and presynaptic terminals at early culture stage, however, it was seen mainly at dendritic postsynaptic spine of mature neurons at late culture stages.
View Article and Find Full Text PDFSpecific localization of membrane proteins based on the interactions with membrane lipids at various microdomains (MDs) is under active investigation, since the elucidation of the molecular mechanism of the interactions could reveal a novel concept of cell organization. Due to the strong interactions not only between lipids but also between lipids and proteins, these MDs are considered to be recovered in a detergent-resistant low-density membrane fraction (DRM) after detergent extraction and density-gradient centrifugation. Neurons take well-developed membrane systems during maturation and specific localization of various membrane components, not only proteins but also lipids, is essential for the establishment of the nervous system.
View Article and Find Full Text PDFMembrane microdomains (MDs), or lipid rafts, are recently identified dynamic membrane domains on which various signal-transductions are performed. Intracellular Ca(2+)-binding proteins participate in the Ca(2+) signaling through interaction with various proteins. Neurocalcin alpha (NCalpha) is a member of neuronal calcium sensor (NCS) protein family and shows Ca(2+)-dependent binding to the cell membrane through N-terminal myristoyl moiety.
View Article and Find Full Text PDF