Three thienopyrrole-fused thiadiazole (TPT) fluorescent dyes featuring a common amide linker and different alkoxy substituents on peripheral trialkoxybenzene moieties were synthesized, and their self-assembly behavior in solution was investigated. The obtained results revealed a substantial steric effect of the alkoxy substituents on the supramolecular polymerization mechanism, which results from a combination of π-stacking and hydrogen (H)-bonding interactions. Detailed spectroscopic measurements revealed that with increasing steric demand of the substituents, the supramolecular polymerization processes in pure methylcyclohexane (MCH) or a mixture of MCH and toluene become temperature-sensitive and enthalpically favorable, resulting in a change from the isodesmic assembly mechanism to the cooperative mechanism.
View Article and Find Full Text PDFSwelling of a gel film attached to a soft substrate can induce surface instability, which results in the formation of highly ordered patterns such as wrinkles and folds. This phenomenon has been exploited to fabricate functional devices and rationalize morphogenesis. However, obtaining centimeter-scale patterns without immersing the film in a solvent remains challenging.
View Article and Find Full Text PDFIn order to raise the possibility of the practical use of thermoresponsive hydrogels in various fields, it is imperative to achieve on-demand control of responsive behavior especially by using a simple synthetic method with common monomers. To this end, we synthesized various hydrophilic/hydrophobic copolymer hydrogels from common acrylamide derivatives and acrylate monomers via free radical copolymerization, and examined the correlation between the structure and the swelling properties of the obtained gels, specifically from the viewpoint of the monomer sequence in the network chains and the affinity to water molecules. The obtained gels with a hydrophobic acrylamide monomer were shown to exhibit a sharp volume change in water upon heating at suitable monomer compositions.
View Article and Find Full Text PDFA full understanding of the elastic properties of hydrogels under swelling is required for their practical application in the chemical and biomedical engineering fields. This is because hydrogels are expected to retain water during mechanical use in moist atmospheres. In the present study, we investigated the relationship between the elastic modulus and the swelling ratio in a specific type of hydrogel (a polyacrylamide gel).
View Article and Find Full Text PDFSoft tissue in biological system is a hydrogel with elaborate structure exhibiting repeatable dynamic function. In order to approach such sophisticated system, precise construction of a designed network with multi-components is desired. This communication presents a novel hydrogel having highly dense stimuli-responsive free-end chains around crosslinking structure.
View Article and Find Full Text PDFA fundamental understanding of the effect of a crosslinker on gel properties is important for the design of novel soft materials because a crosslinking is a key component of polymer gels. We focused on post-polymerization crosslinking (PPC) system utilizing activated ester chemistry, which is a powerful tool due to structural diversity of diamine crosslinkers and less susceptibility to solvent effect compared to conventional divinyl crosslinking system, to systematically evaluate the crosslinker effect on the gel properties. A variety of alkyldiamine crosslinkers was employed for the synthesis of poly(-isopropylacrylamide) (PNIPAAm) gels and it was clarified that the length of alkyl chains of diamine crosslinkers strongly affected the gelation reaction and the swelling behavior.
View Article and Find Full Text PDFExperimental evaluation and modeling are important steps in the investigation of the mechanical behaviors of hydrogels in the small- to large-strain range. In this study, the effects of cross-linking and swelling on the true stress-strain response of a specific type of hydrogel (polyacrylamide) were evaluated using a uniaxial tensile test. The development of true strain on the surface of the hydrogel was measured using the digital image correlation method.
View Article and Find Full Text PDFThe effect of monomer sequence along the network chain on the swelling behavior of polymer gels should be clarified for the advanced control of swelling properties of gel materials. To this end, we systematically investigated the swelling properties of poly(acrylamide derivative) gels with the same composition but different monomer sequence by utilizing two gel synthetic methods: copolymerization giving a random network and co-crosslinking giving a blocky network. Both of the copolymerization and the co-crosslinking gels were prepared from the combination of two of the three following monomers: hydrophilic ,-dimethylacrylamide (DMAAm), hydrophobic --butylacrylamide (NBAAm), and thermoresponsive -isopropylacrylamide (NIPAAm) with various monomer compositions.
View Article and Find Full Text PDFJ Colloid Interface Sci
October 2018
Research to improve the dimensional properties of silver nanowires (Ag NWs) for transparent conductive film (TCF) applications are being carried out intensively. However, the protocol for the designed synthesis of high-quality Ag NWs is yet to be developed due to the inadequacy of knowledge on the role of parameters. Here, we attempt to elucidate the role played by the parameters and propose a monoalcohol-copolymer based system for the designed synthesis of Ag NWs superior in quality to the one synthesized using conventional ethylene glycol (EG)-polyvinylpyrrolidone (PVP) system.
View Article and Find Full Text PDF"Template initiator"' platforms (1) have been designed for expressing the sequence information in a template in radical polymerization. Thus, we demonstrated the structural adequacy of 1 consisting of two initiating sites placed ortho to each other in benzene: one for living cationic polymerization to introduce a template carrying substrate-recognition tags, and the other for metal-catalyzed living radical polymerization to achieve sequence regulation. For example, for two positional isomers with an amine template for an acid monomer, only the ortho initiator induced selective radical addition of MAA (recognizable) over MMA (non-recognizable).
View Article and Find Full Text PDFSurprisingly high monomer selectivity was demonstrated in competitive radical addition with two kinds of methacrylates carrying sodium and ammonium cation. Crucial is size-specific recognition by a lariat crown ether embedded close to the reactive halide in a designer template initiator. Especially, a combination with an active ruthenium catalyst led to outstanding selectivity at low temperature.
View Article and Find Full Text PDFA ruthenium(II)-catalyzed, highly selective, quantitative radical addition of an alkene, methacrylic acid (MAA), has been achieved by using a template halide (2) containing a built-in amine group as a recognition site for the carboxyl group of the substrate. The specific ionic binding of MAA by the amine template (1:1 molar ratio) led to preferential formation of the 1:1 MAA-2 adduct, whereas a similar halide without a template induced MAA oligomerization even in the presence of an externally added amine. A competitive radical addition of MAA versus its ester form [methyl methacrylate (MMA)] on the halide further demonstrated that the substrate selectivity [k'(MAA)/k'(MMA)] for 2 is enhanced more than 10 times by the intramolecular introduction of the template relative to the result for the nontemplate halide.
View Article and Find Full Text PDF