Publications by authors named "Shohag M"

The snap bean ( L.) is highly sensitive to both phosphorus (P) deficiency and hypoxic stress, which together can significantly hinder plant growth, nutrient uptake, and yield; however, limited information exists on the effect of P and oxygen (O) fertilization to alleviate these stresses and enhance yield. A two-year field experiment assessed the effects of P and O fertilization on plant growth, pod yield, and P uptake in acidic sandy soil.

View Article and Find Full Text PDF

Structural plasticity of dendritic spines in the nucleus accumbens (NAc) is crucial for learning from aversive experiences. Activation of NMDA receptors (NMDARs) stimulates Ca-dependent signaling that leads to changes in the actin cytoskeleton, mediated by the Rho family of GTPases, resulting in postsynaptic remodeling essential for learning. We investigated how phosphorylation events downstream of NMDAR activation drive the changes in synaptic morphology that underlie aversive learning.

View Article and Find Full Text PDF

Aims: Type 2 diabetes mellitus (T2DM) is a complex and multifaceted disease that contributes significantly to Bangladesh's disease burden. Both polygene abnormalities and environmental factors contribute to this genetic condition. Vitamin D receptor (VDR) has immunomodulatory functions that may contribute to the developmentof type 2 diabetes.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights that traumatic brain injury (TBI) is a significant issue in Bangladesh, with limited medical facilities and specialist resources impacting patient care.
  • A total of 280 TBI patients were analyzed, revealing a predominance of injury caused by road traffic accidents, particularly among young adults aged 18-50, and a notable portion suffering from severe and moderate TBI.
  • The findings link certain demographic and clinical factors, such as consciousness post-injury and CT scan results, to TBI severity and prognosis, emphasizing that patients with more severe injuries face greater risks for unfavorable outcomes.
View Article and Find Full Text PDF

Objective: Multiple sclerosis is a serious neurodegenerative disorder that causes disability in young adults. Genetic predisposition of multiple sclerosis is well documented and several single nucleotide polymorphisms (SNPs) of the CD58 were found to be associated with this disease. This systematic review and meta-analysis were done with the aim of finding the association between CD58 gene SNPs (rs12044852 and rs2300747) and the risk of multiple sclerosis (MS).

View Article and Find Full Text PDF

The synthesis of Polypyrrole (PPy)/TiO/ZnO composites involved a chemical oxidative polymerization process, wherein the addition of TiO/ZnO was varied from 1 to 10 wt%. The composites' photocatalytic capabilities, supercapacitor performance, and potential use as a nitrite sensor were thoroughly assessed, alongside investigations into their photoluminescence (PL) and morphological characteristics. The strong interaction between TiO/ZnO and PPy was confirmed using FTIR, UV-Vis, and PL spectroscopy techniques.

View Article and Find Full Text PDF

Deficiencies of selenium (Se), a necessary microelement for humans, can be remedied by appropriately supplying Se-enriched rice. However, overconsumption of Se-enriched rice poses a potential risk. To accurately assess Se human health risks associated with Se-enriched rice consumption, we developed a rat in vivo model to systematically explore the relative bioavailability of Se (Se-RBA) from Se-enriched rice from a wide geographic range.

View Article and Find Full Text PDF

l-Glutamic acid/ZnS (L-GA/ZnS) composites were prepared by varying the amount of ZnS addition ranging from 1-5 wt% by means of an easy solvent casting approach. The morphological investigation, antimicrobial activity, photocatalytic enactment, and electrochemical properties of the composites were evaluated. The formation of L-GA/ZnS composites was confirmed by FTIR, UV-Vis, and photoluminescence (PL) spectroscopy.

View Article and Find Full Text PDF

Cadmium (Cd) and arsenic (As) in co-contaminated soil can enter the human body harming health via the food chain, such as vegetables. Biochar derived from waste has been used to reduce heavy metal uptake by plant, but long-term effects of biochar under Cd and As co-contaminated soil needs to be investigated. A following mustard (Brassica juncea) was grown on co-contaminated soil amended with different raw materials of biochar including biochars pyrolyzed by lignite coal (LCB), rice straw (RSB), silkworm excrement (SEB), and sugar refinery sludge (SSB).

View Article and Find Full Text PDF

Co-exposure of tetracycline (TC) and polyethylene microplastic (MP-PE) pollution might result in more intricate effects on rice growth and grain quality. In present study, two different rice cultivars of contrasting drought tolerance, Hanyou73 (H73, drought-resistant) and Quanyou280 (Q280, drought-sensitive) were grown on MP-PE and TC-contaminated soils under drought. It was found that drought stress had different influence on TC accumulation in the two rice cultivars.

View Article and Find Full Text PDF

Antibiotic resistance has been recognized as a public health threat in recent years, and mortality due to resistance is increasing alarmingly every year. Antibiotic resistance, among many factors, may arise due to the consumption of substandard antibiotic brands that provide subnormal levels of the drug in the blood. Post-market evaluation can provide important information in assessing pharmaceutical products in terms of quality, purity, and therapeutic aspects.

View Article and Find Full Text PDF

The protoplast experimental system eis an effective tool for functional genomics and cell fusion breeding. However, the physiological and molecular mechanisms of protoplast response to enzymolysis are not clear, which has become a major obstacle to protoplast regeneration. Here, we used physiological, cytological, proteomics and gene expression analysis to compare the young leaves of sugarcane and enzymolized protoplasts.

View Article and Find Full Text PDF

Selenium (Se) is an essential trace element for humans. Arbuscular mycorrhizal fungi (AMF) play a crucial role in increasing plant micronutrient acquisition. Soybean ( (Linn.

View Article and Find Full Text PDF

Sustainable strategies are essential for zinc (Zn) biofortification and cadmium (Cd) reduction in staple food crops. Herein, we evaluated the phytotoxicity of Glyzinc under foliar and root application (FA&RA) in a lab-scale experiment, and then investigated its Zn efficiency and Cd reduction through foliar application on wheat (Triticum aestivum L.) under field conditions.

View Article and Find Full Text PDF

The correlation of and assays for determining bioavailable Cd amounts in vegetables is limited. Herein, the correlations between Cd relative bioavailability (Cd-RBA) in rat models and Cd bioaccessibility in four assays were examined in vegetables. Results showed that the combined liver plus kidney data provided the appropriate endpoint and was used as a biomarker to estimate Cd-RBA.

View Article and Find Full Text PDF

Arsenic (As) contamination in vegetables is a severe threat to human health. However, the evaluation of As relative bioavailability (As-RBA) or bioaccessibility in vegetables is still unexplored. The study sought to evaluate the As-RBA in commonly consumed ten leaf vegetables collected from As-polluted farmlands.

View Article and Find Full Text PDF

The emergence of the COVID-19 pandemic has led to significant public health crisis all over the world. The rapid spreading nature and high mortality rate of COVID-19 places a huge pressure on scientists to develop effective diagnostics and therapeutics to control the pandemic. Some scientists working on plant biotechnology together with commercial enterprises for the emergency manufacturing of diagnostics and therapeutics have aimed to fulfill the rapid demand for SARS-CoV-2 protein antigen and antibody through a rapid, scalable technology known as transient/stable expression in plants.

View Article and Find Full Text PDF

Phytoremediation coupled with agro-production is a sustainable strategy for remediation of toxic metal contaminated farmlands without interrupting crop production. In this study, high accumulating oilseed rape was rotated with low accumulating rice to evaluate the effects of crop rotation on growth performance and uptake of cadmium (Cd) in plants. In this system, oilseed rape was inoculated with plant growth promoting endophyte (PGPE) consortium, and rice was applied with soil composite amendment and foliar inhibitor.

View Article and Find Full Text PDF

Cadmium (Cd) contamination and continuous cropping obstacle often coexist in greenhouse soil and seriously restrict cucumber production. In this study, hyperaccumulator Sedum alfredii Hance was intercropped with spring cucumber (Cucumis sativus L.), then rotated with low accumulator water spinach and autumn cucumber under rational water regime, composited amendment was applied to soil before transplanting autumn cucumber.

View Article and Find Full Text PDF

Cadmium (Cd) is a pollutant toxic to plants and a potential threat to human health. Selenium (Se), though not essential for plants, has beneficial effects on plants under abiotic stress. A hydroponic experiment was conducted to investigate the impact of different forms of Se (Nano-Se, selenite, selenate, and SeMet) on accumulation, subcellular distribution, and chemical forms of Cd, as well as oxidative stress in rice seedlings.

View Article and Find Full Text PDF

The present study investigated the effects of foliar application of zinc (Zn) and selenium (Se) on bioavailability of Zn and Se and toxicity of cadmium (Cd) and lead (Pb) to different water spinach ecotypes (LA and HA) grown in slightly (XZ) or moderately (LJY) contaminated fields via in vitro digestion combined with Caco-2/HL-7702 cell model. The obtained results revealed that foliar application of Zn and Se promoted yield, increased total, bioaccessible and bioavailable fractions of Zn and Se in plants, indicating that foliar application is a feasible way of biofortification. Although there was no significant effect on liver cell proliferation (MTT), membrane stability (LDH) and hepatocyte enzyme (ALT and AST) activities, the obvious ecotype and soil dependent fluctuations of lipid peroxidation (MDA) and antioxidant enzyme (SOD, POD and CAT) activities in serum highly suggest that the low accumulator and clean field should be used in agricultural production rather than the high accumulator and contaminated farmland.

View Article and Find Full Text PDF

Selenium (Se) deficiency is a public health concern that is mainly caused by inadequate intake of Se from staple crops. The purpose of this study is to investigate the effects of inoculation with different arbuscular mycorrhizal fungus (AMF) strains, including Funneliformis mosseae (Fm) and Glomus versiforme (Gv), and fertilization with selenite or selenate on the accumulation and speciation of Se in rice. The results showed that using both AMF inoculation and Se fertilization could promote organic Se accumulation in rice grain than using only Se fertilization.

View Article and Find Full Text PDF

Folates are one of the essential micronutrients for all living organisms. Due to inadequate dietary intake, folate deficiency remains prevalent in humans. Genetically diverse germplasms can potentially be used as parents in breeding programs and also for understanding the folate regulatory network.

View Article and Find Full Text PDF

Selenium (Se) is an essential micronutrient for humans but is toxic when consumed in excess through the food chain, such as vegetables. Therefore, it is imperative to understand the relationship between the bioavailability of Se in soil and its uptake in edible parts of vegetables. This study investigated Se bioavailability of in six representative Chinese soils treated with different concentrations of exogenous selenate fertilizer (0-2 mg·kg) by comparing diffusive gradients in thin-films (DGT) and chemical extraction methods.

View Article and Find Full Text PDF

Background: Bodily self-consciousness depends on the coherent integration of sensory information. In addition to visual and somatosensory information processing, vestibular contributions have been proposed and investigated. Vestibular information seems especially important for self-location, but remains difficult to study.

View Article and Find Full Text PDF