Phosphoinositides (PIPs) act as intracellular signaling molecules that regulate various cellular processes. Abnormalities in PIP metabolism cause various pathological conditions, including neurodegenerative diseases, cancer and immune disorders. Several neurological diseases with diverse phenotypes, such as ataxia with cerebellar atrophy or intellectual disability without brain malformation, are caused by mutations in INPP4A, which encodes a phosphoinositide phosphatase.
View Article and Find Full Text PDFThe SRY gene induces testis development even in XX individuals. However, XX/Sry testes fail to produce mature sperm, due to the absence of Y chromosome carrying genes essential for spermatogenesis. XX/Sry Sertoli cells show abnormalities in the production of lactate and cholesterol required for germ cell development.
View Article and Find Full Text PDFStable reference genes are important for gene expression analyses such as quantitative PCR. The stability of 15 candidate reference genes that can be used to developing mouse gonads was thoroughly verified using combinations of multiple algorithms. The expression of these genes fluctuated greatly depending on the analysis period and/or gender.
View Article and Find Full Text PDFIt has been suggested that an increase in the use of pesticides affects neurodevelopment, but there has been no animal experiment showing a causal relation between neonicotinoid pesticides (NNs) and depression. We examined whether dinotefuran (DIN), the most widely used NN in Japan, induces depression. Male mice were administered DIN between 3 and 8 weeks of age, referring to the no-observed-effect level (NOEL).
View Article and Find Full Text PDFAlthough neonicotinoid pesticides are expected to have harmful influence on mammals, there is little animal experimental data to support the effect and mechanisms. Since acetylcholine causes the release of dopamine, neonicotinoids may confer a risk of developmental disorders via a disturbance in the monoamine systems. Male mice were peripubertally administered dinotefuran (DIN) referring to no observed effect level (NOEL) and performed behavioral and immunohistological analyses.
View Article and Find Full Text PDFNeonicotinoids are novel systemic pesticides acting as agonists on the nicotinic acetylcholine receptors (nAChRs) of insects. Experimental studies have revealed that neonicotinoids pose potential risks for the nervous systems of non-target species, but the brain regions responsible for their behavioral effects remain incompletely understood. This study aimed to assess the neurobehavioral effects of clothianidin (CTD), a later neonicotinoid developed in 2001 and widely used worldwide, and to explore the target regions of neonicotinoids in the mammalian brain.
View Article and Find Full Text PDFNeonicotinoids are pesticides used worldwide. They bind to insect nicotinic acetylcholine receptors (nAChRs) with high affinity. We previously reported that clothianidin (CTD), one of the latest neonicotinoids, reduced antioxidant expression and induced germ cell death in the adult testis of vertebrates.
View Article and Find Full Text PDFMammalian sexual fate is determined by the presence or absence of sex determining region of the Y chromosome (Sry) in the "bipotential" gonads. Recent studies have demonstrated that both male and female sexual development are induced by distinct and active genetic pathways. Breeding the Y chromosome from Mus m.
View Article and Find Full Text PDFDioxins are widespread persistent environmental contaminants with adverse impacts on humans and experimental animals. Behavioral and cognitive functions are impaired by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) exposure. TCDD exerts its toxicity via the aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor.
View Article and Find Full Text PDFNeonicotinoids, some of the most widely used pesticides in the world, act as agonists to the nicotinic acetylcholine receptors (nAChRs) of insects, resulting in death from abnormal excitability. Neonicotinoids unexpectedly became a major topic as a compelling cause of honeybee colony collapse disorder, which is damaging crop production that requires pollination worldwide. Mammal nAChRs appear to have a certain affinity for neonicotinoids with lower levels than those of insects; there is thus rising concern about unpredictable adverse effects of neonicotinoids on vertebrates.
View Article and Find Full Text PDF