Publications by authors named "Shogo Sawaguchi"

This protocol describes how to measure interaction between Notch receptors and their ligands by cell-based assay using Dynabeads. We have used the protocol to determine binding capacity between Notch1-transfected HEK293T cells and ligand-coated Dynabeads. Expression of in Notch1-expressing cells promoted binding toward DLL4-coated beads, but not JAG1-coated beads.

View Article and Find Full Text PDF

The glycosyltransferase EOGT transfers O-GlcNAc to a consensus site in epidermal growth factor-like (EGF) repeats of a limited number of secreted and membrane proteins, including Notch receptors. In EOGT-deficient cells, the binding of DLL1 and DLL4, but not JAG1, canonical Notch ligands was reduced, and ligand-induced Notch signaling was impaired. Mutagenesis of O-GlcNAc sites on NOTCH1 also resulted in decreased binding of DLL4.

View Article and Find Full Text PDF

The Golgi stress response is a homeostatic mechanism that controls the capacity of the Golgi apparatus in accordance with cellular demands. When the capacity of the Golgi apparatus becomes insufficient (Golgi stress), transcription levels of Golgi-related genes encoding glycosylation enzymes, a Golgi structural protein, and components of vesicular transport are upregulated through a common cis-acting enhancer-the Golgi apparatus stress response element (GASE). Here, we identified the transcription factor MLX as a GASE-binding protein.

View Article and Find Full Text PDF

Addition of O-linked N-acetylglucosamine (O-GlcNAc) to the hydroxyl group of serine and threonine residues (O-GlcNAcylation) is a post-translational modification common to multicellular eukaryotes. To date, O-GlcNAcylations have been divided into two categories: the first involves nucleocytoplasmic and mitochondrial (intracellular) O-GlcNAcylation catalyzed by O-GlcNAc transferase (OGT), and the second involves O-GlcNAcylation in the secretory pathways (extracellular) catalyzed by epidermal growth factor (EGF) domain-specific O-GlcNAc transferase (EOGT). Intracellular O-GlcNAcylation is involved in essential cellular and physiological processes such as synaptic activity, neuronal morphogenesis, and learning and memory.

View Article and Find Full Text PDF

Background: O-linked β-N-acetylglucosamine (O-GlcNAc) modification of epidermal growth factor (EGF) domains catalyzed by EGF domain O-GlcNAc transferase (EOGT) is the first example of GlcNAc modification in the lumen of the endoplasmic reticulum (ER).

Scope Of Review: This review summarizes current knowledge on the EOGT-catalyzed O-GlcNAc modification of EGF domains obtained through biochemical characterization, genetic analysis in Drosophila, and identification of human EOGT mutation. Additionally, this review discusses GTDC2-another ER protein homologous to EOGT that catalyzes the GlcNAc modification of O-mannosylated α-dystroglycan-and other components of the biosynthetic pathway involved in GlcNAc modification in the ER lumen.

View Article and Find Full Text PDF

Epidermal growth factor (EGF) domain-specific O-linked N-acetylglucosamine (EOGT) is an endoplasmic reticulum (ER)-resident O-linked N-acetylglucosamine (O-GlcNAc) transferase that acts on EGF domain-containing proteins such as Notch receptors. Recently, mutations in EOGT have been reported in patients with Adams-Oliver syndrome (AOS). Here, we have characterized enzymatic properties of mouse EOGT and EOGT mutants associated with AOS.

View Article and Find Full Text PDF

The Golgi stress response is a mechanism by which, under conditions of insufficient Golgi function (Golgi stress), the transcription of Golgi-related genes is upregulated through an enhancer, the Golgi apparatus stress response element (GASE), in order to maintain homeostasis in the Golgi. The molecular mechanisms associated with GASE remain to be clarified. Here, we identified TFE3 as a GASE-binding transcription factor.

View Article and Find Full Text PDF