Publications by authors named "Shogo Ohmae"

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals and reveal the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetics and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers.

View Article and Find Full Text PDF

High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but don't reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals, revealing the computational roles of neurons with distinct functional, molecular, and anatomical properties. We combine optogenetic activation and pharmacology using the cerebellum as a testbed to generate a curated ground-truth library of electrophysiological properties for Purkinje cells, molecular layer interneurons, Golgi cells, and mossy fibers.

View Article and Find Full Text PDF

The cerebellum, interconnected with the cerebral neocortex, plays a vital role in human-characteristic cognition such as language processing, however, knowledge about the underlying circuit computation of the cerebellum remains very limited. To gain a better understanding of the computation underlying cerebellar language processing, we developed a biologically constrained cerebellar artificial neural network (cANN) model, which implements the recently identified cerebello-cerebellar recurrent pathway. We found that while cANN acquires prediction of future words, another function of syntactic recognition emerges in the middle layer of the prediction circuit.

View Article and Find Full Text PDF

Analysis of electrophysiological data from Purkinje cells (P-cells) of the cerebellum presents unique challenges to spike sorting. Complex spikes have waveforms that vary significantly from one event to the next, raising the problem of misidentification. Even when complex spikes are detected correctly, the simple spikes may belong to a different P-cell, raising the danger of misattribution.

View Article and Find Full Text PDF

Rett syndrome is a devastating childhood neurological disorder caused by mutations in . Of the many symptoms, motor deterioration is a significant problem for patients. In mice, deleting from the cortex or basal ganglia causes motor dysfunction, hypoactivity, and tremor, which are abnormalities observed in patients.

View Article and Find Full Text PDF

The brain generates negative prediction error (NPE) signals to trigger extinction, a type of inhibitory learning that is responsible for suppressing learned behaviors when they are no longer useful. Neurons encoding NPE have been reported in multiple brain regions. Here, we use an optogenetic approach to demonstrate that GABAergic cerebello-olivary neurons can generate a powerful NPE signal, capable of causing extinction of conditioned motor responses on its own.

View Article and Find Full Text PDF

Fifty years have passed since David Marr, Masao Ito, and James Albus proposed seminal models of cerebellar functions. These models share the essential concept that parallel-fiber-Purkinje-cell synapses undergo plastic changes, guided by climbing-fiber activities during sensorimotor learning. However, they differ in several important respects, including holistic versus complementary roles of the cerebellum, pattern recognition versus control as computational objectives, potentiation versus depression of synaptic plasticity, teaching signals versus error signals transmitted by climbing-fibers, sparse expansion coding by granule cells, and cerebellar internal models.

View Article and Find Full Text PDF

The cerebellum is thought to have a variety of functions because it developed with the evolution of the cerebrum and connects with different areas in the frontoparietal cortices. Like neurons in the cerebral cortex, those in the cerebellum also exhibit strong activity during planning in addition to the execution of movements. However, their specific roles remain elusive.

View Article and Find Full Text PDF

The cerebellum and the basal ganglia play an important role in the control of voluntary eye movement associated with complex behavior, but little is known about how cerebellar projections project to cortical eye movement areas. Here we used retrograde transneuronal transport of rabies virus to identify neurons in the cerebellar nuclei that project via the thalamus to supplementary eye field (SEF) of the frontal cortex of macaques. After rabies injections into the SEF, many neurons in the restricted region, the ventral aspects of the dentate nucleus (DN), the caudal pole of the DN, and the posterior interpositus nucleus (PIN) were labeled disynaptically via the thalamus, whereas no neuron labeling was found in the anterior interpositus nucleus (AIN).

View Article and Find Full Text PDF

Rhythmic events recruit neuronal activity in the basal ganglia and cerebellum, but their roles remain elusive. In monkeys attempting to detect a single omission of isochronous visual stimulus, we found that neurons in the caudate nucleus showed increased activity for each stimulus in sequence, while those in the cerebellar dentate nucleus showed decreased activity. Firing modulation in the majority of caudate neurons and all cerebellar neurons was proportional to the stimulus interval, but a quarter of caudate neurons displayed a clear duration tuning.

View Article and Find Full Text PDF

The ability to flexibly adjust movement timing is important for everyday life. Although the basal ganglia and cerebellum have been implicated in monitoring of supra- and sub-second intervals, respectively, the underlying neuronal mechanism remains unclear. Here, we show that in monkeys trained to generate a self-initiated saccade at instructed timing following a visual cue, neurons in the caudate nucleus kept track of passage of time throughout the delay period, while those in the cerebellar dentate nucleus were recruited only during the last part of the delay period.

View Article and Find Full Text PDF

This chapter presents a method for performing in vivo single-unit extracellular recordings and optogenetics during an associative, cerebellum-dependent learning task in head-fixed mice. The method uses a cylindrical treadmill system that reduces stress in the mice by allowing them to walk freely, yet it provides enough stability to maintain single-unit isolation of neurons for tens of minutes to hours. Using this system, we have investigated sensorimotor coding in the cerebellum while mice perform learned skilled movements.

View Article and Find Full Text PDF

Previous studies suggest that the cerebellum and basal ganglia are involved in sub-second and supra-second timing, respectively. To test this hypothesis at the cellular level, we examined the activity of single neurons in the cerebellar dentate nucleus in monkeys performing the oculomotor version of the self-timing task. Animals were trained to report the passage of time of 400, 600, 1200, or 2400 ms following a visual cue by making self-initiated memory-guided saccades.

View Article and Find Full Text PDF

The cerebellum is known to be involved in temporal information processing. However, the underlying neuronal mechanisms remain unclear. In our previous study, monkeys were trained to make a saccade in response to a single omission of periodically presented visual stimuli.

View Article and Find Full Text PDF

Activity-dependent transcription influences neuronal connectivity, but the roles and mechanisms of inactivation of activity-dependent genes have remained poorly understood. Genome-wide analyses in the mouse cerebellum revealed that the nucleosome remodeling and deacetylase (NuRD) complex deposits the histone variant H2A.z at promoters of activity-dependent genes, thereby triggering their inactivation.

View Article and Find Full Text PDF

Although we can detect slight changes in musical rhythm, the underlying neural mechanism remains elusive. Here we show that two distinct mechanisms are automatically selected depending on the speed of the rhythm. When human subjects detected a single omission of isochronous repetitive auditory stimuli, reaction time strongly depended on the stimulus onset asynchrony (SOA) for shorter SOAs (<250 ms), but was almost constant for longer SOAs.

View Article and Find Full Text PDF

Climbing fiber inputs to Purkinje cells are thought to be involved in generating the instructive signals that drive cerebellar learning. To investigate how these instructive signals are encoded, we recorded the activity of individual climbing fibers during cerebellum-dependent eyeblink conditioning in mice. We found that climbing fibers signaled both the unexpected delivery and the unexpected omission of the periocular airpuff that served as the instructive signal for eyeblink conditioning.

View Article and Find Full Text PDF

Objective: The control of movement timing has been a significant challenge for brain-machine interfaces (BMIs). As a first step toward developing a timing-based BMI, we aimed to decode movement timing and target locations in a visually guided saccadic eye movement task using the activity of neurons in the primate frontal eye field (FEF) and supplementary eye field (SEF).

Approach: For this purpose, we developed a template-matching method that could recruit a variety of neurons in these areas.

View Article and Find Full Text PDF

The cerebellum is implicated in sensory prediction in the subsecond range. To explore how neurons in the cerebellum encode temporal information for the prediction of sensory events, we trained monkeys to make a saccade in response to either a single omission or deviation of isochronous repetitive stimuli. We found that neurons in the cerebellar dentate nucleus exhibited a gradual elevation of the baseline firing rate as the repetition progressed.

View Article and Find Full Text PDF

Temporal information is essential for perception and behavior. Although the neural substrates for temporal processing have been elucidated in many different conditions, how individual neurons in each network represent time remains largely unknown. Here we review previous models of time representation in the brain, and propose that these models can be classified into four different groups based on two viewpoints.

View Article and Find Full Text PDF

Several areas of the macaque brain are known to be related to the reward during the performance of saccadic eye-movement tasks. Neurons in the supplementary eye field (SEF) have been reported to be involved in the prediction and detection of a reward. We describe a group of neurons in the SEF that became active during the period of reward delivery after saccades toward a specific direction, but showed weaker activity in other directions, although the same amount of reward was given in each direction.

View Article and Find Full Text PDF

It is essential to sense anticipated and elapsed time in our daily life. Several areas of the brain including parietal cortex, prefrontal cortex, basal ganglia and olivo-cerebellar system are known to be related to this temporal processing. We now describe a number of cells in the supplementary eye field (SEF) with phasic, delay activity and postdelay activity modulation that varied with the length of the delay period.

View Article and Find Full Text PDF

Despite the critical importance of Ca(2+)/calmodulin (CaM)-dependent protein kinase (CaMK) II signaling in neuroplasticity, only a limited amount of work has so far been available regarding the presence and significance of another predominant CaMK subfamily, the CaMKI/CaMKIV family, in the central nervous system. We here searched for kinases with a core catalytic structure similar to CaMKI and CaMKIV. We isolated full-length cDNAs encoding three mouse CaMKI/CaMKIV-related kinases, CLICK-I (CL1)/doublecortin and CaM kinase-Like (DCAMKL)1, CLICK-II (CL2)/DCAMKL2, and CLICK-I,II-related (CLr)/DCAMKL3, the kinase domains of which had an intermediate homology not only to CaMKI/CaMKIV but also to CaMKII.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionqqfph293urrf65l10djkp9ttsmihpjsq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once