Publications by authors named "Shogo Narimatsu"

Objectives: As the prognosis of relapsed/refractory (R/R) acute myeloid leukaemia (AML) remains poor, novel treatment strategies are urgently needed. Clinical trials have shown that chimeric antigen receptor (CAR)-T cells for AML are more challenging than those targeting CD19 in B-cell malignancies. We recently developed -modified ligand-based CAR-T cells that target CD116/CD131 complexes, also known as the GM-CSF receptor (GMR), for the treatment of juvenile myelomonocytic leukaemia.

View Article and Find Full Text PDF

The cytokine lymphotoxin-α (LTα) is a promising candidate for use in cancer therapy. However, the instability of LTαin vivo and the insufficient levels of tumor necrosis factor receptor 1 (TNFR1)-mediated bioactivity of LTα limit its therapeutic potential. Here, we created LTα mutants with increased TNFR1-mediated bioactivity by using a phage display technique.

View Article and Find Full Text PDF

It has gradually become evident that nanomaterials, which are widely used in cosmetics, foods, and medicinal products, could induce substantial inflammation. However, the roles played by the physical characteristics of nanomaterials in inflammatory responses have not been elucidated. Here, we examined how particle size and surface modification influenced the inflammatory effects of nanosilica particles, and we investigated the mechanisms by which the particles induced inflammation.

View Article and Find Full Text PDF

T-cell receptors (TCR) recognize complexes between human leukocyte antigens (HLA) and peptides derived from intracellular proteins. Their therapeutic use for antigen targeting, however, has been hindered by the very low binding affinity of TCRs, typically in the 1- to 100-μM range. Therefore, to construct mutant TCRs with high binding affinity, we need to understand the relationship between the structure and activity of these molecules.

View Article and Find Full Text PDF

The cytokine lymphotoxin-α (LTα) is a promising anticancer agent; however, its instability currently limits its therapeutic potential. Modification of proteins with polyethylene glycol (PEGylation) can improve their in vivo stability, but PEGylation occurs randomly at lysine residues and the N-terminus. Therefore, PEGylated proteins are generally heterogeneous and have lower bioactivity than their non-PEGylated counterparts.

View Article and Find Full Text PDF

The monitoring of NVs in municipal wastewater by both real-time RT-LAMP and real-time RT-PCR, and the comparison of these two methods with respect to NV detection were carried out. The change in NVs detected by real-time RT-LAMP agreed well with that detected by real-time RT-PCR. In contrast, the correlation between the copy number determined by real-time RT-PCR and the threshold time (Tt) determined by real-time RT-LAMP obtained during monitoring was not significant (0.

View Article and Find Full Text PDF

Previously, we generated a cancer-specific gene therapy system using adenovirus vectors (Adv) conjugated to polyethylene glycol (Adv-PEG). Here, we developed a novel Adv that targets both tumor tissues and tumor vasculatures after systemic administration by conjugating CGKRK tumor vasculature homing peptide to the end of a 20-kDa PEG chain (Adv-PEG(CGKRK)). In a primary tumor model, systemic administration of Adv-PEG(CGKRK) resulted in ~500- and 100-fold higher transgene expression in tumor than that of unmodified Adv and Adv-PEG, respectively.

View Article and Find Full Text PDF

Application of adenovirus vectors (Adv) in metastatic cancer treatment is limited. We previously demonstrated that covalent conjugation of polyethleneglycol (PEG) to Adv enhances therapeutic effects and decreases toxic side-effects after systemic administration, but the level of immune response to PEGylated Adv (PEG-Ad) was not examined. Here, we examined the effect of PEGylation of Adv on the production of anti-Adv antibodies and antitumor response.

View Article and Find Full Text PDF

Although amorphous silica particles (SPs) are widely used in cosmetics, foods and medicinal products, it has gradually become evident that SPs can induce substantial inflammation accompanied by interleukin-1beta (IL-1beta) production. Here, to develop safe forms of SPs, we examined the mechanisms of SP-induced inflammation and the relationship between particle characteristics and biological responses. We compared IL-1beta production levels in THP-1 human macrophage like cells in response to unmodified SP of various diameters (30- to 1000-nm) and demonstrated that unmodified microsized 1000-nm SP (mSP1000) induced higher levels of IL-1beta production than did smaller unmodified SPs.

View Article and Find Full Text PDF

Cancer gene therapy with adenovirus vectors (Adv) is limited to local administration because systemic administration of Adv produces a weak therapeutic effect and severe side effects. Previously, we generated a dual cancer-specific Adv system by using Adv covalently conjugated to polyethylene glycol (PEG) for transductional targeting and the telomere reverse transcriptase (TERT) promoter as a cancer-specific promoter for transcriptional targeting (PEG-Ad-TERT). We demonstrated that systemic administration of PEG-Ad-TERT showed superior antitumor effects against lung metastatic cancer with negligible side effects.

View Article and Find Full Text PDF