Publications by authors named "Shogo Mizutaka"

We investigate the effect of degree correlation on a susceptible-infected-susceptible (SIS) model with a nonlinear cooperative effect (synergy) in infectious transmissions. In a mean-field treatment of the synergistic SIS model on a bimodal network with tunable degree correlation, we identify a discontinuous transition that is independent of the degree correlation strength unless the synergy is absent or extremely weak. Regardless of synergy (absent or present), a positive and negative degree correlation in the model reduces and raises the epidemic threshold, respectively.

View Article and Find Full Text PDF

We examine the structure of the percolating cluster (PC) formed by site percolation on a random clustered network (RCN) model. Using the generating functions, we formulate the clustering coefficient and assortative coefficient of the PC. We analytically and numerically show that the PC in the highly clustered networks is clustered even at the percolation threshold.

View Article and Find Full Text PDF

Objectives: The aim of the present study was to clarify the association between the degree of development of pregnancy parturition scars (PPSs) and the total number of pregnancies and parturitions (TNPPs) on the basis of new identification standards for PPS in the preauricular area.

Materials And Methods: Preauricular grooves were macroscopically observed on the pelves of 103 early modern males and 295 females (62 early modern females; 233 present-day females). Three categories of PPS in the preauricular area were defined.

View Article and Find Full Text PDF

We study how large functional networks can grow stably under possible cascading overload failures and evaluated the maximum stable network size above which even a small-scale failure would cause a fatal breakdown of the network. Employing a model of cascading failures induced by temporally fluctuating loads, the maximum stable size nmax has been calculated as a function of the load reduction parameter r that characterizes how quickly the total load is reduced during the cascade. If we reduce the total load sufficiently fast (r ≥ rc), the network can grow infinitely.

View Article and Find Full Text PDF

We present an exact analysis of the physical properties of bimodal networks specified by the two peak degree distribution fully incorporating the degree-degree correlation between node connections. The structure of the correlated bimodal network is uniquely determined by the Pearson coefficient of the degree correlation, keeping its degree distribution fixed. The percolation threshold and the giant component fraction of the correlated bimodal network are analytically calculated in the whole range of the Pearson coefficient from -1 to 1 against two major types of node removal, which are the random failure and the degree-based targeted attack.

View Article and Find Full Text PDF

Taking into account the fact that overload failures in real-world functional networks are usually caused by extreme values of temporally fluctuating loads that exceed the allowable range, we study the robustness of scale-free networks against cascading overload failures induced by fluctuating loads. In our model, loads are described by random walkers moving on a network and a node fails when the number of walkers on the node is beyond the node capacity. Our results obtained by using the generating function method show that scale-free networks are more robust against cascading overload failures than Erdős-Rényi random graphs with homogeneous degree distributions.

View Article and Find Full Text PDF

We study the structural robustness of scale-free networks against overload failures induced by loads exceeding the node capacity, based on analytical and numerical approaches to the percolation problem in which a fixed number of nodes are removed according to the overload probability. Modeling fluctuating loads by random walkers in a network, we find that the degree dependence of the overload probability drastically changes with respect to the total load. We also elucidate that there exist two types of structural robustness of networks against overload failures.

View Article and Find Full Text PDF