Bombyx Vasa (BmVasa) assembles non-membranous organelle, nuage or Vasa bodies, in germ cells, known as the center for Siwi-dependent transposon silencing and concomitant Ago3-piRISC biogenesis. However, details of the body assembly remain unclear. Here, we show that the N-terminal intrinsically disordered region (N-IDR) and RNA helicase domain of BmVasa are responsible for self-association and RNA binding, respectively, but N-IDR is also required for full RNA-binding activity.
View Article and Find Full Text PDFTransition metal-catalyzed enantioselective free radical substitution reactions have recently attracted attention as convenient and important building tools in synthetic chemistry, although construction of stereogenic carbon centers at the propargylic position of propargylic alcohols by reactions with free radicals remains unchallenged. Here we present a strategy to control enantioselective propargylic substitution reactions with alkyl radicals under photoredox conditions by applying dual photoredox and diruthenium catalytic system, where the photoredox catalyst generates alkyl radicals from 4-alkyl-1,4-dihydropyridines, and the diruthenium core with a chiral ligand traps propargylic alcohols and alkyl radicals to guide enantioselective alkylation at the propargylic position, leading to high yields of propargylic alkylated products containing a quaternary stereogenic carbon center at the propargylic position with a high enantioselectivity. The result described in this paper provides the successful example of transition metal-catalyzed enantioselective propargylic substitution reactions with free alkyl radicals.
View Article and Find Full Text PDFThe synthesis of ammonia from atmospheric dinitrogen, nitrogen fixation, is one of the essential reactions for human beings. Because the current industrial nitrogen fixation depends on dihydrogen produced from fossil fuels as raw material, the development of a nitrogen fixation reaction that relies on the energy provided by renewable energy, such as visible light, is an important research goal from the viewpoint of sustainable chemistry. Herein, we establish an iridium- and molybdenum-catalysed process for synthesizing ammonia from dinitrogen under ambient reaction conditions and visible light irradiation.
View Article and Find Full Text PDFNitrogen (N) fixation by nature, which is a crucial process for the supply of bio-available forms of nitrogen, is performed by nitrogenase. This enzyme uses a unique transition-metal-sulfur-carbon cluster as its active-site co-factor ([(R-homocitrate)MoFeSC], FeMoco), and the sulfur-surrounded iron (Fe) atoms have been postulated to capture and reduce N (refs. ).
View Article and Find Full Text PDFDual photoredox- and nickel-catalyzed hydroalkylation of terminal alkynes with 4-alkyl-1,4-dihydropyridines under visible light irradiation to afford Markovnikov- or anti-Markovnikov-type alkylated alkenes in good-to-high yields has been achieved, in which the regioselectivity of the products was effectively controlled by coordination ligands for nickel species. Using [NiCl (dtbbpy)] as a catalyst led to the formation of Markovnikov-type products, whereas using NiCl ⋅ 6 H O led to the formation of anti-Markovnikov-type products.
View Article and Find Full Text PDFA molybdenum-nitride complex bearing a pyridine-based PNP-type pincer ligand derived from dinitrogen is reacted with various kinds of carbon-centered electrophiles to functionalize the nitride ligand in the molybdenum complex. Methylation with MeOTf and acylation with diphenylacetyl chloride of the nitride complex afford the corresponding imide complexes a carbon-nitrogen bond formation. In the case of reactions with phenylisocyanate and diphenylketene, the PNP ligand works as a non-innocent ligand to form the corresponding ureate and acylimide complexes, respectively.
View Article and Find Full Text PDFInvited for the cover of this issue are Ken Sakata, Yoshiaki Nishibayashi, and co-workers at The University of Tokyo and Toho University. The image depicts the propargylic substitution reaction of a propargylic alcohol with an N-monosubstituted hydrazone, where the nucleophilicity of the hydrazone is controlled by the choice of catalytic system. Read the full text of the article at 10.
View Article and Find Full Text PDFRuthenium- and copper-catalyzed propargylic substitution reactions of propargylic alcohol derivatives with N-monosubstituted hydrazones as ambident nucleophiles are achieved in which N-monosubstituted hydrazones exhibit impressive different reactivities depending on different catalytic systems, behaving as carbon-centered nucleophiles to give the corresponding propargylic alkylated products in ruthenium catalysis, or as nitrogen-centered nucleophiles to afford the corresponding propargylic aminated products in copper catalysis. DFT calculations were carried out to investigate the detailed reaction pathways of these two systems. Further transformation of propargylic substituted products affords the corresponding multisubstituted pyrazoles as cyclization products in good to high yields.
View Article and Find Full Text PDFEarth-abundant metal-catalyzed oxidative conversion of ammonia into dinitrogen is a promising process to utilize ammonia as a transportation fuel. Herein, we report the manganese-catalyzed ammonia oxidation under chemical or electrochemical conditions using a manganese complex bearing (1S,2S)-N,N'-bis(3,5-di-tert-butylsalicylidene)-1,2-cyclohexanediamine. Under chemical conditions using oxidant, up to 17.
View Article and Find Full Text PDFCooperative photoredox- and nickel-catalyzed alkylative cyclization reactions of iodoalkynes with 4-alkyl-1,4-dihydropyridines as alkylation reagents under visible light irradiation have been achieved to afford the corresponding alkylated cyclopentylidenes in good to high yields. Introduction of substituents at the propargylic position of iodoalkynes has led to the stereoselective formation of -isomers. The present reaction system provides a novel synthetic method for alkylative cyclization reactions of both terminal and internal alkynes with cooperative photoredox and nickel catalysis.
View Article and Find Full Text PDFThe development of transition metal-catalyzed enantioselective propargylic substitution reactions has gained much progress in recent years, however, no successful example with phosphorus-centered nucleophiles has yet been reported until now. Herein, we report the first successful example of ruthenium-catalyzed enantioselective propargylic substitution reactions of propargylic alcohols with diarylphosphine oxides as phosphorus-centered nucleophiles. This synthetic approach provides a new method to prepare chiral phosphorus-containing organic compounds.
View Article and Find Full Text PDFMolybdenum complexes bearing an anionic pyrrole-based PNP-type pincer ligand have been prepared and have been found to work as catalysts for the conversion of N2 into NH3 under ambient conditions.
View Article and Find Full Text PDFWe have designed and synthesized divalent initiators that contain a fluorescent terquinoxaline unit with two palladium groups for the living polymerization of 1,2-diisocyanobenzenes. Using these divalent initiators, the bidirectional living polymerization of a monomer bearing ()-butoxymethyl side chains afforded telechelic helical poly(quinoxaline-2,3-diyl)s (PQXs), which consist of a terquinoxaline unit at the center of the polymer chain and chiral oligomeric blocks on both sides. The location of the core unit was confirmed by NMR spectroscopy and photoluminescence measurements.
View Article and Find Full Text PDFCatalytic C-H borylation has been reported using newly designed iron complexes bearing a 4,5,6,7-tetrahydroisoindol-2-ide-based PNP pincer ligand. The reaction tolerated various five-membered heteroarenes, such as pyrrole derivatives, as well as six-membered aromatic compounds, such as toluene. Successful examples of the iron-catalyzed sp C-H borylation of anisole derivatives were also presented.
View Article and Find Full Text PDFIron-chloride, -dinitrogen, and -methyl complexes bearing anionic carbazole-based PNP-type pincer ligands are designed, prepared and characterized by X-ray analysis. Some iron complexes are found to work as catalysts toward nitrogen fixation under mild reaction conditions.
View Article and Find Full Text PDFIron-dinitrogen complexes bearing methyl- and phenyl-substituted pyrrole-based anionic PNP-type pincer ligands are prepared and characterized by X-ray analysis. The former complex is found to work as a more effective catalyst than that bearing a non-substituted PNP-type pincer ligand toward the transformation of nitrogen gas into ammonia and hydrazine under mild reaction conditions.
View Article and Find Full Text PDFIntensive efforts for the transformation of dinitrogen using transition metal-dinitrogen complexes as catalysts under mild reaction conditions have been made. However, limited systems have succeeded in the catalytic formation of ammonia. Here we show that newly designed and prepared dinitrogen-bridged dimolybdenum complexes bearing N-heterocyclic carbene- and phosphine-based PCP-pincer ligands [{Mo(N)(PCP)}(μ-N)] (1) work as so far the most effective catalysts towards the formation of ammonia from dinitrogen under ambient reaction conditions, where up to 230 equiv.
View Article and Find Full Text PDFThe direct formation of ammonia from molecular dinitrogen under mild reaction conditions was achieved by using new cobalt dinitrogen complexes bearing an anionic PNP-type pincer ligand. Up to 15.9 equivalents of ammonia were produced based on the amount of catalyst together with 1.
View Article and Find Full Text PDF