The aim of the present study was to design a unique bioelectrode for the quantitative analysis of a potential cancer biomarker, platelet-derived growth factor-BB (PDGF-BB), which can be used for the early detection of cancer. We report the fabrication of succinic acid-capped selenomolybdate polyoxometalate nanodots, POM (SA), decorated antimonene hybrid film on glassy carbon as a suitable bioelectrode. Antimonene nanosheets, synthesized by the chemical exfoliation of antimony provided a large surface area for the symmetric dispersal of POM (SA) nanodots, resulting in site-specific covalent immobilization of the aptamer, PDGF-BB.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2017
A biofunctionalized reduced graphene oxide (rGO)-modified screen-printed carbon electrode (SPCE) was constructed as an immunosensor for C-reactive protein (CRP) detection, a biomarker released in early stage acute myocardial infarction. A different approach of single frequency analysis (SFA) study was utilized for the biomolecular sensing, by monitoring the response in phase angle changes obtained at an optimized frequency resulting from antigen-antibody interactions. A set of measurements were carried out to optimize a frequency where a maximum change in phase angle was observed, and in this case, we found it at around 10 Hz.
View Article and Find Full Text PDFWe report an electrodeposited poly(pyrrole-co-pyrrolepropylic acid) copolymer modified electroactive graphene-carbon nanotubes composite deposited on a glassy carbon electrode to detect the protein antigen (cTnI). The copolymer provides pendant carboxyl groups for the site-specific covalent immobilization of protein antibody, anti-troponin I. The hybrid nanocomposite was used as a transducer for biointerfacial impedance sensing for cTnI detection.
View Article and Find Full Text PDFAppl Biochem Biotechnol
October 2014
We report a protein antibody, Ab-CRP, functionalized Pt nanoparticle-decorated chemical vapor deposition (CVD)-grown graphene on glassy carbon electrode, as a bioelectrode, for the quantitative analysis of human C-reactive protein (CRP). Chemical vapor deposition was used to grow a polycrystalline graphene film on copper and was mounted over a glassy carbon electrode after copper etching through π-π stacking. Ab-CRP was covalently immobilized on mercaptopropionic acid (MPA)-capped Pt nanoparticles that were covalently anchored over the graphene to form a bioelectrode.
View Article and Find Full Text PDF