Objectives: Early placental volume (PV) has been associated with small-for-gestational-age infants born under the 10th/5th centiles (SGA10/SGA5). Manual or semiautomated PV quantification from 3D ultrasound (3DUS) is time intensive, limiting its incorporation into clinical care. We devised a novel convolutional neural network (CNN) pipeline for fully automated placenta segmentation from 3DUS images, exploring the association between the calculated PV and SGA.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
January 2020
: Placental size in early pregnancy has been associated with important clinical outcomes, including fetal growth. However, extraction of placental size from three-dimensional ultrasound (3DUS) requires time-consuming interactive segmentation methods and is prone to user variability. We propose a semiautomated segmentation technique that requires minimal user input to robustly measure placental volume from 3DUS images.
View Article and Find Full Text PDF