Publications by authors named "Shobha Mareddy"

Tissue engineering allows the design of functionally active cells within supportive bio-scaffolds to promote the development of new tissues such as cartilage and bone for the restoration of pathologically altered tissues. However, all bone tissue engineering applications are limited by a shortage of stem cells. The adult bone marrow stroma contains a subset of nonhematopoietic cells referred to as bone marrow mesenchymal stem cells (BMSCs).

View Article and Find Full Text PDF

Decline in the frequency of potent mesenchymal stem cells (MSCs) has been implicated in ageing and degenerative diseases. Increasing the circulating stem cell population can lead to renewed recruitment of these potent cells at sites of damage. Therefore, identifying the ideal cells for ex vivo expansion will form a major pursuit of clinical applications.

View Article and Find Full Text PDF

To regenerate the complex tissue such as bone-cartilage construct using tissue engineering approach, controllable differentiation of bone marrow stromal cells (BMSCs) into chondrogenic and osteogenic lineages is crucially important. This study proposes to test a minimum common osteochondrocytic differentiation medium (MCDM) formulated by including common soluble supplements (dexamethasone and ascorbic acid) used to induce chondrogenic and osteogenic differentiation. The MCDM coupled with supplemented growth factors was tested for its ability to differentiate BMSCs into osteogenic and chondrogenic lineages in both two-dimensional and three-dimensional culture systems.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) have attracted immense research interest in the field of regenerative medicine due to their ability to be cultured for successive passages and multi-lineage differentiation. The molecular mechanisms governing MSC self-renewal and differentiation remain largely unknown. The development of sophisticated techniques, in particular clinical proteomics, has enabled researchers in various fields to identify and characterize cell specific biomarkers for therapeutic purposes.

View Article and Find Full Text PDF

The demand for treatment strategies for damaged musculoskeletal tissue is continuously growing, especially with the increasing number of older people with degenerative diseases of the skeletal system such as osteoarthritis (OA). Because depletion of multipotent cells has been implicated in degenerative joint diseases, cell-based therapies have been proposed for tissue regeneration, especially for cartilage repair. The aim of the present study is to focus on the possibility of deriving and expanding multipotential mesenchymal stem cells (MSCs) from bone marrow samples of patients with OA by characterizing MSCs at the single cell level.

View Article and Find Full Text PDF