Publications by authors named "Shobha Kondragunta"

Prescribed fires (fires intentionally set for mitigation purposes) produce pollutants, which have negative effects on human and animal health. One of the pollutants produced from fires is fine particulate matter (PM). The Flint Hills (FH) region of Kansas experiences extensive prescribed burning each spring (March-May).

View Article and Find Full Text PDF

Despite improvements in ambient air quality in the US in recent decades, many people still experience unhealthy levels of pollution. At present, national-level alert-day identification relies predominately on surface monitor networks and forecasters. Satellite-based estimates of surface air quality have rapidly advanced and have the capability to inform exposure-reducing actions to protect public health.

View Article and Find Full Text PDF

The COVID-19 stay-at-home orders issued in the United States caused significant reductions in traffic and economic activities. To understand the pandemic's perturbations on US emissions and impacts on urban air quality, we developed near-real-time bottom-up emission inventories based on publicly available energy and economic datasets, simulated the emission changes in a chemical transport model, and evaluated air quality impacts against various observations. The COVID-19 pandemic affected US emissions across broad-based energy and economic sectors and the impacts persisted to 2021.

View Article and Find Full Text PDF

Background: Long-term improvements in air quality and public health in the continental USA were disrupted over the past decade by increased fire emissions that potentially offset the decrease in anthropogenic emissions. This study aims to estimate trends in black carbon and PM concentrations and their attributable mortality burden across the USA.

Methods: In this study, we derived daily concentrations of PM and its highly toxic black carbon component at a 1-km resolution in the USA from 2000 to 2020 via deep learning that integrated big data from satellites, models, and surface observations.

View Article and Find Full Text PDF

The mass concentration of fine particulate matter (PM; diameters less than 2.5 μm) estimated from geostationary satellite aerosol optical depth (AOD) data can supplement the network of ground monitors with high temporal (hourly) resolution. Estimates of PM over the United States (US) were derived from NOAA's operational geostationary satellites Advanced Baseline Imager (ABI) AOD data using a geographically weighted regression with hourly and daily temporal resolution.

View Article and Find Full Text PDF

Wildland fire smoke contains large amounts of PM that can traverse tens to hundreds of kilometers, resulting in significant deterioration of air quality and excess mortality and morbidity in downwind regions. Estimating PM levels while considering the impact of wildfire smoke has been challenging due to the lack of ground monitoring coverage near the smoke plumes. We aim to estimate total PM concentration during the Camp Fire episode, the deadliest wildland fire in California history.

View Article and Find Full Text PDF

A near-real-time (NRT) aerosol forecast and diagnostic approach is developed based on the system of Infusing satellite Data into Environmental Applications for East Asia, herein denoted as IDEA-EA. The design incorporates a 0.5-degree Global Forecast System (GFS) and Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol and cloud retrievals for meteorological and remote sensing inputs.

View Article and Find Full Text PDF

We present the first NO measurements from the Nadir Mapper of Ozone Mapping and Profiler Suite (OMPS) instrument aboard the NOAA-20 satellite. NOAA-20 OMPS was launched in November 2017, with a nadir resolution of 17 × 13 km similar to the Ozone Monitoring Instrument (OMI). The retrieval of NOAA-20 NO vertical columns were achieved through the Direct Vertical Column Fitting (DVCF) algorithm, which was uniquely designed and successfully used to retrieve NO from OMPS aboard Suomi National Polar-orbiting Partnership (SNPP) spacecraft, predecessor to NOAA-20.

View Article and Find Full Text PDF

Wildfire outbreaks can lead to extreme biomass burning (BB) emissions of both oxidized (e.g., nitrogen oxides; NO = NO+NO) and reduced form (e.

View Article and Find Full Text PDF

The Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is under evaluation for use in conjunction with the Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission. Column aerosol optical thickness (AOT) data from MAIAC are compared against corresponding data from the Visible Infrared Imaging Radiometer Suite (VIIRS) instrument over North America during 2013. Product coverage and retrieval strategy, along with regional variations in AOT through comparison of both matched and un-matched seasonally gridded data are reviewed.

View Article and Find Full Text PDF

Increasing development of exo-urban environments and the spread of urbanization into forested areas is making humans and forest ecosystems more susceptible to the risks associated with wildfires. Larger and more damaging wildfires are having a negative impact on forest ecosystem services, and smoke from wildfires adversely affects the public health of people living in exo-urban environments. Satellite aerosol measurements are valuable tools that can track the evolution of wildfires and monitor the transport of smoke plumes.

View Article and Find Full Text PDF

Collocated Interagency Monitoring of Protected Visual Environments (IMPROVE) particulate matter (PM) less than 2.5 microm in aerodynamic diameter (PM2.5) chemically speciated data, mass of PM less than 10 microm in aerodynamic diameter (PM10), and Aerosol Robotic Network (AERONET) aerosol optical depth (AOD) and size distribution at Bondville, IL, were compared with satellite-derived AOD.

View Article and Find Full Text PDF

A system has been developed to combine remote sensing and ground-based measurements of aerosol concentration and aerosol light scattering parameters into a three-dimensional view of the atmosphere over the United States. Utilizing passive and active remote sensors from space and the ground, the system provides tools to visualize particulate air pollution in near real time and archive the results for retrospective analyses. The main components of the system (Infusing satellite Data into Environmental Applications [IDEA], the U.

View Article and Find Full Text PDF

We analyze the strength of association between aerosol optical depth (AOD) retrievals from the GOES aerosol/smoke product (GASP) and ground-level fine particulate matter (PM2.5) to assess AOD as a proxy for PM2.5 in the United States.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessiono4rsi8qkt8gtn2frjhcmmsin0uose3kv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once