Single-cell atlases pose daunting computational challenges pertaining to the integration of spatial and temporal information and the visualization of trajectories across large atlases. We introduce StaVia, a computational framework that synergizes multi-faceted single-cell data with higher-order random walks that leverage the memory of cells' past states, fused with a cartographic Atlas View that offers intuitive graph visualization. This spatially aware cartography captures relationships between cell populations based on their spatial location as well as their gene expression and developmental stage.
View Article and Find Full Text PDFInferring cellular trajectories using a variety of omic data is a critical task in single-cell data science. However, accurate prediction of cell fates, and thereby biologically meaningful discovery, is challenged by the sheer size of single-cell data, the diversity of omic data types, and the complexity of their topologies. We present VIA, a scalable trajectory inference algorithm that overcomes these limitations by using lazy-teleporting random walks to accurately reconstruct complex cellular trajectories beyond tree-like pathways (e.
View Article and Find Full Text PDFThe association of the intrinsic optical and biophysical properties of cells to homeostasis and pathogenesis has long been acknowledged. Defining these label-free cellular features obviates the need for costly and time-consuming labelling protocols that perturb the living cells. However, wide-ranging applicability of such label-free cell-based assays requires sufficient throughput, statistical power and sensitivity that are unattainable with current technologies.
View Article and Find Full Text PDFMotivation: New single-cell technologies continue to fuel the explosive growth in the scale of heterogeneous single-cell data. However, existing computational methods are inadequately scalable to large datasets and therefore cannot uncover the complex cellular heterogeneity.
Results: We introduce a highly scalable graph-based clustering algorithm PARC-Phenotyping by Accelerated Refined Community-partitioning-for large-scale, high-dimensional single-cell data (>1 million cells).