Publications by authors named "Shobana Shanmugasundaram"

Electrospinning is a widely used processing method to form fibrous tissue engineering scaffolds that mimic the structural features of the native extracellular matrix. Electrospun fibers made of collagen have been sought because it is a natural structural protein that supports cell attachment and growth. Yet, conventional solvents used to electrospin collagen can result in the loss of hydrolytic stability and fiber morphology of the scaffold.

View Article and Find Full Text PDF

This study investigated whether the synthetic peptide B2A (B2A2-K-NS) could induce in vitro chondrogenic differentiation and enhance the in vivo repair of damaged cartilage in an osteoarthritis model. In vitro, micromass cultures of murine and human stem cells with and without B2A were used as models of chondrogenic differentiation. Micromasses were evaluated for gene expression using microarray analysis and quantitative PCR; and for extracellular matrix production by Alcian blue staining for sulfated glycosaminoglycan and immunochemical detection of collagen type II.

View Article and Find Full Text PDF

Of the eight catalytic transglutaminases (TGs), transglutaminase 2 (TG2) has been the most comprehensively studied due to its ubiquitous expression in multiple cell types. Despite the observed critical role for this enzyme in multiple biological processes in vitro, TG2 knockout mouse models have shown no severe developmental phenotypes, suggesting compensation by other TGs. To begin characterization of the compensating mechanisms, we analyzed total transamidating activity and expression patterns of all catalytically active TGs in seven different tissues/organs from wild-type and TG2 knockout mice.

View Article and Find Full Text PDF

Tissue transglutaminase (tTG) is a multifunctional enzyme with a plethora of potential applications in regenerative medicine and tissue bioengineering. In this study, we examined the role of tTG as a regulator of chondrogenesis in human mesenchymal stem cells (MSC) using nanofibrous scaffolds coated with collagen type XI. Transient treatment of collagen type XI films and 3D scaffolds with tTG results in enhanced attachment of MSC and supports rounded cell morphology compared to the untreated matrices or those incubated in the continuous presence of tTG.

View Article and Find Full Text PDF

The expression pattern for tissue transglutaminase (TG2) suggests that it regulates cartilage formation. We analyzed the role of TG2 in early stages of chondrogenesis using differentiating high-density cultures of mesenchymal cells from chicken limb bud as a model. We demonstrate that TG2 promotes cell differentiation towards a pre-hypertrophic stage without inducing precocious hypertrophic maturation.

View Article and Find Full Text PDF

Nanofiber scaffolds, produced by the electrospinning technique, have gained widespread attention in tissue engineering due to their morphological similarities to the native extracellular matrix. For cartilage repair, studies have examined their feasibility; however these studies have been limited, excluding the influence of other scaffold design features. This study evaluated the effect of scaffold design, specifically examining a range of nano to micron-sized fibers and resulting pore size and mechanical properties, on human mesenchymal stem cells (MSCs) derived from the adult bone marrow during chondrogenesis.

View Article and Find Full Text PDF