Myosin is an actin-based motor protein that generates force by cycling between actin-attached (strong binding: ADP or rigor) and actin-detached (weak binding: ATP or ADP.P(i)) states during its ATPase cycle. However, it remains unclear what specific conformational changes in the actin binding site take place on binding to actin, and how these structural changes lead to product release and the production of force and motion.
View Article and Find Full Text PDFMyosin IIIA is unique among myosin proteins in that it contains an N-terminal kinase domain capable of autophosphorylating sites on the motor domain. A construct of myosin IIIA lacking the kinase domain localizes more efficiently to the stereocilia tips and alters the morphology of the tips in inner ear hair cells. Therefore, we performed a kinetic analysis of myosin IIIA without the kinase domain (MIII DeltaK) and compared these results with our reported analysis of myosin IIIA containing the kinase domain (MIII).
View Article and Find Full Text PDFMissense mutations in the membrane-binding actin-based motor protein, myosin-1a (Myo1a), have recently been linked to sensorineural deafness in humans. One of these mutations, E385D, impacts a residue in the switch II region of the motor domain that is present in virtually all members of the myosin superfamily. We sought to examine the impact of E385D on the function of Myo1a, both in terms of mechanochemical activity and ability to target to actin-rich microvilli in polarized epithelial cells.
View Article and Find Full Text PDFSalp15 is an Ixodes scapularis salivary protein that inhibits CD4+ T cell activation through the repression of TCR ligation-triggered calcium fluxes and IL-2 production. We show in this study that Salp15 binds specifically to the CD4 coreceptor on mammalian host T cells. Salp15 specifically associates through its C-terminal residues with the outermost two extracellular domains of CD4.
View Article and Find Full Text PDFMyosin IIIA is specifically expressed in photoreceptors and cochlea and is important for the phototransduction and hearing processes. In addition, myosin IIIA contains a unique N-terminal kinase domain and C-terminal tail actin-binding motif. We examined the kinetic properties of baculovirus expressed human myosin IIIA containing the kinase, motor, and two IQ domains.
View Article and Find Full Text PDFThe upper 50-kDa region of myosin may be critical for coupling between the nucleotide- and actin-binding regions. We introduced a tetracysteine motif in the upper 50-kDa domain (residues 292-297) of myosin V containing a single IQ domain (MV 1IQ), allowing us to label this site with the fluorescein biarscenical hairpin-binding dye (FlAsH) (MV 1IQ FlAsH). The enzymatic properties of MV 1IQ FlAsH were similar to those of unlabeled MV 1IQ except for a 3-fold reduced ADP-release rate.
View Article and Find Full Text PDFA Salmonella enterica serovar Typhimurium aroA-deficient delivery system was used to target the immunosuppressive protein Salp15 to antigen-presenting cells. In vitro and in vivo infections with Salp15-containing Salmonella resulted in an impaired CD4(+)-T-cell activation, suggesting that the protein was produced by antigen-presenting cells in a physiologically active form.
View Article and Find Full Text PDFFEMS Immunol Med Microbiol
November 2002
Cyclooxygenase (Cox) is a key enzyme in the biosynthetic metabolism of prostaglandins. The inducible isoform of Cox-2 has been implicated in inflammation and its specific inhibition can be used to treat noninfectious inflammatory diseases, such as rheumatoid arthritis. Borrelia burgdorferi, the agent of Lyme disease, can induce joint inflammation.
View Article and Find Full Text PDF