Deep learning (DL) has substantially enhanced natural language processing (NLP) in healthcare research. However, the increasing complexity of DL-based NLP necessitates transparent model interpretability, or at least explainability, for reliable decision-making. This work presents a thorough scoping review of explainable and interpretable DL in healthcare NLP.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
February 2023
People across the globe have felt and are still going through the impact of COVID-19. Some of them share their feelings and suffering online via different online social media networks such as Twitter. Due to strict restrictions to reduce the spread of the novel virus, many people are forced to stay at home, which significantly impacts people's mental health.
View Article and Find Full Text PDFThe ability to explain why the model produced results in such a way is an important problem, especially in the medical domain. Model explainability is important for building trust by providing insight into the model prediction. However, most existing machine learning methods provide no explainability, which is worrying.
View Article and Find Full Text PDFIEEE Trans Comput Soc Syst
August 2021
The recent Coronavirus Infectious Disease 2019 (COVID-19) pandemic has caused an unprecedented impact across the globe. We have also witnessed millions of people with increased mental health issues, such as depression, stress, worry, fear, disgust, sadness, and anxiety, which have become one of the major public health concerns during this severe health crisis. Depression can cause serious emotional, behavioral, and physical health problems with significant consequences, both personal and social costs included.
View Article and Find Full Text PDF