This review examines the complex role of Pin1 in the development and treatment of cancer. Pin1 is the only peptidyl-prolyl isomerase (PPIase) that can recognize and isomerize phosphorylated Ser/Thr-Pro peptide bonds. Pin1 catalyzes a structural change in phosphorylated Ser/Thr-Pro motifs that can modulate protein function and thereby impact cell cycle regulation and tumorigenesis.
View Article and Find Full Text PDFFamilial adenomatous polyposis (FAP) is a heritable disease that increases the risk of colorectal cancer (CRC) development because of heterozygous mutations in APC. Little is known about the microenvironment of FAP. Here, single-cell RNA sequencing was performed on matched normal tissues, adenomas, and carcinomas from four patients with FAP.
View Article and Find Full Text PDFBackground: Gastric cancer (GC) is characterized by an immunosuppressive and treatment-resistant tumor immune microenvironment (TIME). Here, we investigated the roles of different immunosuppressive cell types in the development of the GC TIME.
Methods: Single-cell RNA sequencing (scRNA-seq) and multiplex immunostaining of samples from untreated or immune checkpoint inhibitor (ICI)-resistant GC patients were used to examine the correlation between certain immunosuppressive cells and the prognosis of GC patients.
Background: Tertiary lymphoid structures (TLSs) are associated with a favorable prognosis in several cancers. However, the correlation between TLSs and outcomes of esophageal squamous cell carcinoma (ESCC) and the impact of TLSs on the tumor immune microenvironment (TIME) remain unknown.
Methods: We pathologically evaluated the significance of TLSs in ESCC focusing on TLS maturation using 180 ESCC specimens and performed single-cell RNA sequencing (scRNA-seq) using 14 ESCC tissues to investigate functional differences of immune cells according to TLS presence.
Although chemotherapy has been an essential treatment for cancer, the development of immune checkpoint blockade therapy was revolutionary, and a comprehensive understanding of the immunological tumor microenvironment (TME) has become crucial. Here, we investigated the impact of neoadjuvant chemotherapy (NAC) on immune cells in the TME of human esophageal squamous cell carcinoma using single cell RNA-sequencing. Analysis of 30 fresh samples revealed that CD8+/CD4+ T cells, dendritic cells (DCs), and macrophages in the TME of human esophageal squamous cell carcinoma showed higher levels of an anti-tumor immune response in the NAC(+) group than in the NAC(-) group.
View Article and Find Full Text PDFBackground: Tumour immune microenvironment is related with carcinogenesis and efficacy of immunotherapy. B cells play major roles in humoral immunity, but detailed functions of tumour-infiltrating B lymphocytes (TIL-Bs) are unknown. Therefore, our aim was to investigate the functional heterogeneity of TIL-Bs in oesophageal squamous cell carcinoma (ESCC) and lymph nodes (LNs) during chemotherapy.
View Article and Find Full Text PDFFor stage II and III esophageal squamous cell carcinoma (ESCC), neoadjuvant chemotherapy (NAC) followed by esophagectomy is recommended in the Japanese guidelines for the diagnosis and treatment of esophageal cancer. However, recurrence of ESCC is common regardless of the NAC regimen and surgical method, and NAC demonstrates limited efficacy against recurrence. Therefore, the present study was conducted to identify risk factors of recurrence of ESCC with surgery after NAC.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is characterized by a desmoplastic reaction caused by cancer-associated fibroblasts (CAFs), which provokes treatment resistance. CAFs are newly proposed to be heterogeneous populations with different functions within the PDAC microenvironment. The most direct sources of CAFs are resident tissue fibroblasts and mesenchymal stem cells, however, the origins and functions of CAF subtypes remain unclear.
View Article and Find Full Text PDF