Inositol-requiring enzyme 1α (IRE1α) is a sensor of endoplasmic reticulum (ER) stress and drives ER stress response pathways. Activated IRE1α exhibits RNase activity and cleaves mRNA encoding X-box binding protein 1, a transcription factor that induces the expression of genes that maintain ER proteostasis for cell survival. Previously, we showed that IRE1α undergoes -nitrosylation, a post-translational modification induced by nitric oxide (NO), resulting in reduced RNase activity.
View Article and Find Full Text PDFUbiquitously distributed environmental electrophiles covalently modify DNA and proteins, potentially leading to adverse health effects. However, the impacts of specific electrophiles on target proteins and their physiological roles remain largely unknown. In the present study, we focused on DNA methylation, which regulates gene expression and physiological responses.
View Article and Find Full Text PDFMethylmercury (MeHg) is an environmental neurotoxin that induces damage to the central nervous system and is the causative agent in Minamata disease. The mechanisms underlying MeHg neurotoxicity remain largely unknown, and there is a need for effective therapeutic agents, such as those that target MeHg-induced endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), which is activated as a defense mechanism. We investigated whether intraperitoneal administration of the chemical chaperone, 4-phenylbutyric acid (4-PBA), at 120 mg/kg/day can alleviate neurotoxicity in the brains of mice administered 50 ppm MeHg in drinking water for 5 weeks.
View Article and Find Full Text PDFDNA methylation is a crucial epigenetic modification that regulates gene expression and determines cell fate; however, the triggers that alter DNA methylation levels remain unclear. Recently, we showed that S-nitrosylation of DNA methyltransferase (DNMT) induces DNA hypomethylation and alters gene expression. Furthermore, we identified DBIC, a specific inhibitor of S-nitrosylation of DNMT3B, to suppress nitric oxide (NO)-induced gene alterations.
View Article and Find Full Text PDFNitric oxide (NO) plays a physiological role in signal transduction and excess or chronic NO has toxic effects as an inflammatory mediator. NO reversibly forms protein S-nitrosylation and exerts toxicological functions related to disease progression. DNA methyltransferases, epigenome-related enzymes, are inhibited in enzymatic activity by S-nitrosylation.
View Article and Find Full Text PDFTIF1β/KAP1/TRIM28, a chromatin modulator, both represses and activates the transcription of genes in normal and malignant cells. Analyses of datasets on leukemia patients revealed that the expression level of TIF1β was increased in patients with chronic myeloid leukemia at the blast crisis and acute myeloid leukemia. We generated a BCR::ABL1 conditional knock-in (KI) mouse model, which developed aggressive myeloid leukemia, and demonstrated that the deletion of the Tif1β gene inhibited the progression of myeloid leukemia and showed longer survival than that in BCR::ABL1 KI mice, suggesting that Tif1β drove the progression of BCR::ABL1-induced leukemia.
View Article and Find Full Text PDFUpregulation of nitric oxide (NO) production contributes to the pathogenesis of numerous diseases via S-nitrosylation, a post-translational modification of proteins. This process occurs due to the oxidative reaction between NO and a cysteine thiol group; however, the extent of this reaction remains unknown. S-Nitrosylation of PRMT1, a major asymmetric arginine methyltransferase of histones and numerous RNA metabolic proteins, was induced by NO donor treatment.
View Article and Find Full Text PDFReactive carbonyl species (RCS), which are abundant in the environment and are produced in vivo under stress, covalently bind to nucleophilic residues such as Cys in proteins. Disruption of protein function by RCS exposure is predicted to play a role in the development of various diseases such as cancer and metabolic disorders, but most studies on RCS have been limited to simple cytotoxicity validation, leaving their target proteins and resulting physiological changes unknown. In this study, we focused on methyl vinyl ketone (MVK), which is one of the main RCS found in cigarette smoke and exhaust gas.
View Article and Find Full Text PDFAdult T-cell leukemia/lymphoma (ATL) is caused by human T-cell leukemia virus type 1 (HTLV-1). In addition to HTLV-1 bZIP factor (HBZ), a leukemogenic antisense transcript of HTLV-1, abnormalities of genes involved in TCR-NF-κB signaling, such as CARD11, are detected in about 90% of patients. Utilizing mice expressing CD4 T cell-specific CARD11(E626K) and/or CD4 T cell-specific HBZ, namely CARD11(E626K) mice, HBZ transgenic (Tg) mice, and CARD11(E626K);HBZ Tg double transgenic mice, we clarify these genes' pathogenetic effects.
View Article and Find Full Text PDFHigh mobility group nucleosome-binding protein 3 (HMGN3), a member of the HMGN family, modulates the structure of chromatin and regulates transcription through transcription factors. HMGN3 has been implicated in the development of various cancers; however, the underlying mechanisms remain unclear. We herein demonstrated that the high expression of HMGN3 correlated with the metastasis of liver fluke infection-induced cholangiocarcinoma (CCA) in patients in northeastern Thailand.
View Article and Find Full Text PDFIn order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY).
View Article and Find Full Text PDFHigh mobility group AT-hook 2 (Hmga2) is a chromatin modifier protein that plays a critical role in fetal development and leukemia propagation by binding to chromatin and DNA via its AT-hook domains. However, the molecular mechanisms by which Hmga2 activates the expression of target genes to drive the self-renewal of hematopoietic stem cells (HSCs) remain unclear. We generated Rosa26 locus Hmga2 conditional knock-in mice and found that overexpression of Hmga2 promoted self-renewal of normal HSCs, but maintained their fitness in bone marrow, and consequently was not sufficient to initiate malignancy.
View Article and Find Full Text PDFIn the tumor microenvironment, senescent non-malignant cells, including cancer-associated fibroblasts (CAFs), exhibit a secretory profile under stress conditions; this senescence-associated secretory phenotype (SASP) leads to cancer progression and chemoresistance. However, the role of senescent CAFs in metastatic lesions and the molecular mechanism of inflammation-related SASP induction are not well understood. We show that pro-inflammatory cytokine-driven EZH2 downregulation maintains the SASP by demethylating H3K27me3 marks in CAFs and enhances peritoneal tumor formation of gastric cancer (GC) through JAK/STAT3 signaling in a mouse model.
View Article and Find Full Text PDFSrc-family tyrosine kinases (SFKs) play important roles in a number of signal transduction events during mitosis, such as spindle formation. A relationship has been reported between SFKs and the mitotic spindle; however, the underlying mechanisms remain unclear. We herein demonstrated that SFKs accumulated in the centrosome region at the onset of mitosis.
View Article and Find Full Text PDFHigh Mobility Group AT-hook 2 (HMGA2) is a chromatin modifier and its overexpression has been found in patients with myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Level of Hmga2 expression is fine-tuned by Lin28b-Let-7 axis and Polycomb Repressive Complex 2, in which deletion of Ezh2 leads to activation of Hmga2 expression in hematopoietic stem cells. To elucidate the mechanisms by which the overexpression of HMGA2 helps transformation of stem cells harboring a driver mutation of TET2, we generated an Hmga2-expressing Tet2-deficient mouse model showing the progressive phenotypes of MDS and AML.
View Article and Find Full Text PDFRUNX3, a RUNX family transcription factor, regulates normal hematopoiesis and functions as a tumor suppressor in various tumors in humans and mice. However, emerging studies have documented increased expression of RUNX3 in hematopoietic stem/progenitor cells (HSPC) of a subset of patients with myelodysplastic syndrome (MDS) showing a worse outcome, suggesting an oncogenic function for RUNX3 in the pathogenesis of hematologic malignancies. To elucidate the oncogenic function of RUNX3 in the pathogenesis of MDS , we generated a -expressing, -deficient mouse model with the pancytopenia and dysplastic blood cells characteristic of MDS in patients.
View Article and Find Full Text PDFMutations in JAK2, myeloproliferative leukemia virus (MPL), or calreticulin (CALR) occur in hematopoietic stem cells (HSCs) and are detected in more than 80% of patients with myeloproliferative neoplasms (MPNs). They are thought to play a driver role in MPN pathogenesis via autosomal activation of the JAK-STAT signaling cascade. Mutant CALR binds to MPL, activates downstream MPL signaling cascades, and induces essential thrombocythemia in mice.
View Article and Find Full Text PDFBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is a hematological malignancy, which seems to originate from the precursor of plasmacytoid dendritic cells. Because BPDCN has an aggressive course and poor prognosis, development of new treatment strategies is essential. Next-Generation Sequencing, a recently evolved technology, reveals new molecular mechanism of BPDCN development.
View Article and Find Full Text PDFThe BCR-ABL1 fusion gene is the driver mutation of Philadelphia chromosome-positive chronic myeloid leukemia (CML). Its expression level in CML patients is monitored by a real-time quantitative polymerase chain reaction defined by the International Scale (qPCR). BCR-ABL1 has also been found in asymptomatic normal individuals using a non-qPCR method.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe involvement of Wnt signaling in human lung cancer remains unclear. This study investigated the role of Wnt11 in neuroendocrine (NE) differentiation, cell proliferation, and epithelial-to-mesenchymal transition (EMT) in human small-cell lung cancer (SCLC). Immunohistochemical staining of resected specimens showed that Wnt11 was expressed at higher levels in SCLCs than in non-SCLCs; 58.
View Article and Find Full Text PDFBlastic plasmacytoid dendritic cell neoplasm (BPDCN) is an aggressive subtype of acute leukemia, the cell of origin of which is considered to be precursors of plasmacytoid dendritic cells (pDCs). Since translocation (6;8)(p21;q24) is a recurrent anomaly for BPDCN, we demonstrate that a pDC-specific super-enhancer of RUNX2 is associated with the MYC promoter due to t(6;8). RUNX2 ensures the expression of pDC-signature genes in leukemic cells, but also confers survival and proliferative properties in BPDCN cells.
View Article and Find Full Text PDF