Publications by authors named "Sho Isoyama"

Interference in cell cycle progression has been noted as one of the important properties of anticancer drugs. In this study, we developed the cell cycle prediction model using high-content imaging data of recipient cells after drug exposure and DNA-staining with a low-toxic DNA dye, SiR-DNA. For this purpose, we exploited HeLa and MCF7 cells introduced with a fluorescent ubiquitination-based cell cycle indicator (Fucci).

View Article and Find Full Text PDF

Background: Phosphoinositide 3-kinases (PI3Ks) are critical regulators of diverse cellular functions and have emerged as promising targets in cancer therapy. Despite significant progress, existing PI3K inhibitors encounter various challenges such as suboptimal bioavailability, potential off-target effects, restricted therapeutic indices, and cancer-acquired resistance. Hence, novel inhibitors that overcome some of these challenges are needed.

View Article and Find Full Text PDF

Translocation-related sarcomas (TRSs) harbor an oncogenic fusion gene generated by chromosome translocation and account for approximately one-third of all sarcomas; however, effective targeted therapies have yet to be established. We previously reported that a pan-phosphatidylinositol 3-kinase (PI3K) inhibitor, ZSTK474, was effective for the treatment of sarcomas in a phase I clinical trial. We also demonstrated the efficacy of ZSTK474 in a preclinical model, particularly in cell lines from synovial sarcoma (SS), Ewing's sarcoma (ES) and alveolar rhabdomyosarcoma (ARMS), all of which harbor chromosomal translocations.

View Article and Find Full Text PDF
Article Synopsis
  • Immune checkpoint blockade (ICB) shows promise in treating cancer, but its effectiveness is limited by the presence of immunosuppressive cells, particularly regulatory T cells (Tregs) in the tumor environment.
  • A selective PI3K inhibitor, ZSTK474, was tested in combination with PD-1 blockade to evaluate its impact on Tregs and CD8 T cells in both animal models and human samples.
  • Results indicated that while higher doses of the PI3K inhibitor can impair CD8 T cell activation, careful optimization of dosage can selectively decrease Tregs, enhance CD8 T cell responses, and contribute to long-lasting antitumor immunity.
View Article and Find Full Text PDF

The hatcing enzyme gene (HE) encodes a protease that is indispensable for the hatching process and is conserved during vertebrate evolution. During teleostean evolution, it is known that HE experienced a drastic transfiguration of gene structure, namely, losing all of its introns. However, these facts are contradiction with each other, since intron-less genes typically lose their original promoter because of duplication via mature mRNA, called retrocopy.

View Article and Find Full Text PDF

Drug resistance often critically limits the efficacy of molecular targeted drugs. Although pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) is an attractive therapeutic strategy for cancer therapy, molecular determinants for efficacy of PI3K inhibitors (PI3Kis) remain unclear. We previously identified that overexpression of insulin-like growth factor 1 receptor (IGF1R) contributed to the development of drug resistance after long-term exposure to PI3Kis.

View Article and Find Full Text PDF

The phosphatidylinositol 3-kinase (PI3K) pathway is frequently activated in human cancers by gain-of-function mutations of phosphoinositide-3-kinase, catalytic, alpha polypeptide (PIK3CA) or dysfunction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN). Therefore PI3K is thought to be a promising target for cancer therapy. Many agents targeting PI3K have been developed and some of them have been evaluated in clinical trials.

View Article and Find Full Text PDF

Acquired resistance is a major obstacle for conventional cancer chemotherapy, and also for some of the targeted therapies approved to date. Long-term treatment using protein tyrosine kinase inhibitors (TKIs), such as gefitinib and imatinib, gives rise to resistant cancer cells carrying a drug-resistant gatekeeper mutation in the kinase domain of the respective target genes, EGFR and BCR-ABL. As for the phosphatidylinositol 3-kinase inhibitors (PI3Kis), little is known about their acquired resistance, although some are undergoing clinical trials.

View Article and Find Full Text PDF