The present study demonstrated that in addition to CYP3A4 and CYP2D6, the metabolism of loratadine is also catalyzed by CYP1A1, CYP2C19, and to a lesser extent by CYP1A2, CYP2B6, CYP2C8, CYP2C9 and CYP3A5. The biotransformation of loratadine was associated with the formation of desloratadine (DL) and further hydroxylation of both DL and the parent drug (loratadine). Based on the inhibition and correlation studies contribution of CYP2C19 in the formation of the major circulating metabolite DL seems to be minor.
View Article and Find Full Text PDFLonafarnib (Sarasar), a farnesyl transferase inhibitor, is currently under development for the treatment of solid tumors. Incubation of lonafarnib with human liver microsomes resulted in the formation of four oxidative metabolites (M1, M2, M3, and M4). Minor to trace levels of these metabolites were detected in humans after multiple-dose administration of lonafarnib.
View Article and Find Full Text PDFDesloratadine is a non-sedating antihistamine recently approved for the treatment of seasonal allergic rhinitis. The major metabolite of desloratadine in human plasma and urine is the glucuronide conjugate of 3-hydroxydesloratadine. 3-Hydroxydesloratadine-glucuronide is also the major in vitro metabolite of 3-hydroxydesloratadine formed by incubation of 3-hydroxydesloratadine with human liver microsomes supplemented with uridine 5'-diphosphate-glucuronic acid (UDPGA).
View Article and Find Full Text PDFEzetimibe [1-(4-fluorophenyl)-3(R)-[3-(4-fluorophenyl)-3(S)-hydroxypropyl]-4(S)-(4-hydroxyphenyl)-2-azetidinone] (Zetia; Schering-Plough, Kenilworth, NJ) is the first in a new class of cholesterol-lowering agents known as cholesterol absorption inhibitors. The objective of this study was to identify the isoform(s) of human liver and intestinal UDP-glucuronosyltransferase (UGT) enzymes responsible for the glucuronidation of ezetimibe. The main circulating metabolite of this drug in human plasma is SCH 60663, the phenolic glucuronide conjugate of ezetimibe.
View Article and Find Full Text PDFPosaconazole (Noxafil, SCH 56592), an orally available broad-spectrum triazole antifungal, is currently in phase III clinical studies for treating serious opportunistic fungal infections. The major in vitro metabolite of posaconazole formed by human liver microsomes supplemented with uridine 5'-diphosphate-glucuronic acid was a glucuronide of posaconazole (m/z877). Screening of 10 cDNA-expressed recombinant human UDP-glucuronosyltransferase (UGT) enzymes showed that only UGT1A4 exhibited catalytic activity with respect to the formation of the glucuronide of posaconazole.
View Article and Find Full Text PDFCytochrome P450 (CYP) substrates that yield fluorescent metabolites were used for rapid screening of drug metabolism activities of 13 recombinant human cytochromes P450, human liver microsomes and human hepatocytes. Reproducible results were obtained using a fluorescent plate reader (CytoFluor) more expediently than those generated using conventional HPLC methods. Typically, results for 96 samples were obtained with the plate reader in less than 10 min as opposed to 15-35 min/sample required by conventional HPLC.
View Article and Find Full Text PDF