Multiple myeloma (MM) induces dysfunctional bone marrow (BM) mesenchymal cells and neoangiogenesis. Pericytes and smooth muscle cells (SMCs) could detach from vessels and become cancer-associated fibroblasts. We found that the pericyte and SMC marker endothelin receptor type A (EDNRA) is overexpressed in whole MM bone biopsies; we sought to characterize its expression.
View Article and Find Full Text PDFBone marrow mesenchymal stem cells (MSCs) may have contrasting impacts on the progression of multiple myeloma (MM). Priming normal MSCs, by culturing them with MM cells, mimics the MSC-induced MM growth. We studied the contrasting effects of conditioned medium (CM) from unprimed or primed MSCs on growth of MM cells from newly diagnosed cases.
View Article and Find Full Text PDFChromosomal translocations are important drivers of haematological malignancies whereby proto-oncogenes are activated by juxtaposition with enhancers, often called We analyzed the epigenomic consequences of rearrangements between the super-enhancers of the immunoglobulin heavy locus () and proto-oncogene that are common in B cell malignancies. By integrating BLUEPRINT epigenomic data with DNA breakpoint detection, we characterized the normal chromatin landscape of the human locus and its dynamics after pathological genomic rearrangement. We detected an H3K4me3 broad domain (BD) within the locus of healthy B cells that was absent in samples with translocations.
View Article and Find Full Text PDFEpigenetic deregulation is increasingly recognized as a contributing pathological factor in multiple myeloma (MM). In particular tri-methylation of H3 lysine 27 (H3K27me3), which is catalyzed by PHD finger protein 19 (PHF19), a subunit of the Polycomb Repressive Complex 2 (PRC2), has recently shown to be a crucial mediator of MM tumorigenicity. Overexpression of PHF19 in MM has been associated with worse clinical outcome.
View Article and Find Full Text PDFis a widely acting transcription factor and its deregulation is a crucial event in many human cancers. is important biologically and clinically in multiple myeloma, but the mechanisms underlying its dysregulation are poorly understood. We show that rearrangements are present in 36.
View Article and Find Full Text PDFSpatial intratumor heterogeneity is frequently seen in multiple myeloma (MM) and poses a significant challenge for risk classifiers, which rely on tumor samples from the iliac crest. Because biopsy-based assessment of multiple skeletal sites is difficult, alternative strategies for risk stratification are required. Recently, the size of focal lesions (FLs) was shown to be a surrogate marker for spatial heterogeneity, suggesting that data from medical imaging could be used to improve risk stratification approaches.
View Article and Find Full Text PDFMesenchymal stem cells (MSC) are an essential component of the bone marrow microenvironment and have shown to support cancer evolution in multiple myeloma. Despite the increasing evidence that multiple myeloma MSCs differ from their healthy counterparts, little knowledge exists as to whether MSCs independently influence disease outcome. The aim of this study was to determine the importance of MSCs in disease progression and outcome in multiple myeloma.
View Article and Find Full Text PDFThe identity of so-called malignant stem cells in multiple myeloma has long been controversial. However, it is now appreciated that a small population of myeloma cells has a stem-like capacity for self-renewal and resides within the population of recognizable myeloma plasma cells, although whether these cells are quiescent or proliferative remains unresolved. It is also now accepted that subpopulations of myeloma plasma cells alternate bidirectionally and dynamically between immature and mature phenotypes, and both subpopulations are capable of clonogenicity in vitro and in animal models.
View Article and Find Full Text PDFF-Fluorodeoxyglucose (FDG)-positron emission tomography (PET) and diffusion-weighted magnetic resonance imaging with background signal suppression (DWIBS) are 2 powerful functional imaging modalities in the evaluation of malignant plasma cell (PC) disease multiple myeloma (MM). Preliminary observations have suggested that MM patients with extensive disease according to DWIBS may be reported as being disease-free on FDG-PET ("PET false-negative"). The aim of this study was to describe the proportion of PET false-negativity in a representative set of 227 newly diagnosed MM patients with simultaneous assessment of FDG-PET and DWIBS, and to identify tumor-intrinsic features associated with this pattern.
View Article and Find Full Text PDFOsteolytic bone lesions are a hallmark of multiple myeloma (MM) bone disease. Bone destruction is associated with severely imbalanced bone remodeling, secondary to increased osteoclastogenesis and significant osteoblast suppression. Lytic lesions of the pelvis are relatively common in MM patients and are known to contribute to the increased morbidity because of the high risk of fracture, which frequently demands extensive surgical intervention.
View Article and Find Full Text PDFTo determine whether a reduction in the intensity of Total Therapy (TT) reduces toxicity and maintains efficacy. A total of 289 patients with gene expression profiling (GEP70)-defined low-risk multiple myeloma were randomized between a standard arm (TT4-S) and a light arm (TT4-L). TT4-L employed one instead of two inductions and consolidations.
View Article and Find Full Text PDFMultiple myeloma is a plasma cell malignancy that is characterized by refractory and relapsing course of disease. Despite the introduction of high-dose chemotherapy in combination with autologous stem cell transplantation and innovative agents such as proteasome inhibitors and immunomodulatory drugs, achieving cure in multiple myeloma is a challenging endeavor. In the last couple of years, enormous advances were made in implementing monoclonal antibody therapy in multiple myeloma.
View Article and Find Full Text PDFPARP1/2 are required for single-strand break repair, and their inhibition causes DNA replication fork collapse and double-strand break (DSB) formation. These DSBs are primarily repaired via homologous recombination (HR), a high-fidelity repair pathway. Should HR be deficient, DSBs may be repaired via error-prone nonhomologous end-joining mechanisms, or may persist, ultimately resulting in cell death.
View Article and Find Full Text PDFBackground: Human primary myeloma (MM) cells do not survive in culture; current in vitro and in vivo systems for growing these cells are limited to coculture with a specific bone marrow (BM) cell type or growth in an immunodeficient animal model. The purpose of the study is to establish an interactive healthy donor whole BM based culture system capable of maintaining prolonged survival of primary MM cells. This normal BM (NBM) coculture system is different from using autologous BM that is already affected by the disease.
View Article and Find Full Text PDFMultiple myeloma is preceded by an asymptomatic phase, comprising monoclonal gammopathy of uncertain significance and smoldering myeloma. Compared to the former, smoldering myeloma has a higher and non-uniform rate of progression to clinical myeloma, reflecting a subset of patients with higher risk. We evaluated the gene expression profile of smoldering myeloma plasma cells among 105 patients enrolled in a prospective observational trial at our institution, with a view to identifying a high-risk signature.
View Article and Find Full Text PDFRAD51-mediated recombinational repair is elevated in multiple myeloma (MM) and predicts poor prognosis. RAD51 has been targeted to selectively sensitize and/or kill tumor cells. Here, we employed a peptide nucleic acid (PNA) to inhibit RAD51 expression in MM cells.
View Article and Find Full Text PDFHighly activated/expanded natural killer (NK) cells can be generated by stimulation with the human leukocyte antigen-deficient cell line K562, genetically modified to express 41BB-ligand and membrane-bound interleukin (IL)15. We tested the safety, persistence, and activity of expanded NK cells generated from myeloma patients (auto-NK) or haploidentical family donors (allo-NK) in heavily pretreated patients with high-risk relapsing myeloma. The preparative regimen comprised bortezomib only or bortezomib and immunosuppression with cyclophosphamide, dexamethasone, and fludarabine.
View Article and Find Full Text PDFSecreted protein CCN1, encoded by CYR61, is involved in wound healing, angiogenesis, and osteoblast differentiation. We identified CCN1 as a microenvironmental factor produced by mesenchymal cells and overexpressed in bones of a subset of patients with monoclonal gammopathy of undetermined significance (MGUS), asymptomatic myeloma (AMM), and multiple myeloma (MM). Our analysis showed that overexpression of CYR61 was independently associated with superior overall survival of MM patients enrolled in our Total Therapy 3 protocol.
View Article and Find Full Text PDFCarfilzomib, the next generation of proteasome inhibitor, may increase osteoblast-related markers in patients with multiple myeloma, but the molecular mechanism of its effect on mesenchymal stem cell differentiation to osteoblasts remains unknown. Herein, we demonstrated that carfilzomib significantly promoted mesenchymal stem cell differentiation into osteoblasts. In osteoprogenitor cells and primary mesenchymal stem cells from patients with myeloma, carfilzomib induced increases in alkaline phosphatase activity, matrix mineralization, and calcium deposition via Wnt-independent activation of β-catenin/TCF signaling.
View Article and Find Full Text PDFLenalidomide has been linked to myelodysplastic syndrome (MDS) after autotransplants for myeloma. Total therapy trials (TT; TT2(-/+) thalidomide) and TT3 (TT3a with bortezomib, thalidomide; TT3b with additional lenalidomide) offered the opportunity to examine the contribution of these immune-modulatory agents to MDS-associated cytogenetic abnormalities (MDS-CA) and clinical MDS or acute leukemia ("clinical MDS/AL"). Of 1080 patients with serial cytogenetic studies, MDS-CA occurred in 11% and clinical MDS/AL in 3%.
View Article and Find Full Text PDFMyeloma cells typically grow in bone, recruit osteoclast precursors and induce their differentiation and activity in areas adjacent to tumor foci. Bruton's tyrosine kinase (BTK), of the TEC family, is expressed in hematopoietic cells and is particularly involved in B-lymphocyte function and osteoclastogenesis. We demonstrated BTK expression in clinical myeloma plasma cells, interleukin (IL)-6- or stroma-dependent cell lines and osteoclasts.
View Article and Find Full Text PDFMultiple myeloma (MM) cells typically grow in focal lesions, stimulating osteoclasts that destroy bone and support MM. Osteoclasts and MM cells are hypermetabolic. The coenzyme nicotinamide adenine dinucleotide (NAD(+)) is not only essential for cellular metabolism; it also affects activity of NAD-dependent enzymes, such as PARP-1 and SIRT-1.
View Article and Find Full Text PDF