Materials and construction methods of nests vary between bird species and at present, very little is known about the relationships between architecture and function in these structures. This study combines computational and experimental techniques to study the structural biology of nests fabricated by the edible nest swiftlet Aerodramus fuciphagus on vertical rock walls using threaded saliva. Utilizing its own saliva as a construction material allows the swiftlets full control over the structural features at a very high resolution in a process similar to additive manufacturing.
View Article and Find Full Text PDFDespite major advances made in modeling vascular tissue biomechanics, the predictive power of constitutive models is still limited by uncertainty of the input data. Specifically, key measurements, like the geometry of the stress-free (SF) state, involve a definite, sometimes non-negligible, degree of uncertainty. Here, we introduce a new approach for sensitivity analysis of vascular hyperelastic constitutive models to uncertainty in SF measurements.
View Article and Find Full Text PDFTwo recent experiments have demonstrated the phenomenon of dynamical tunneling of cold atoms interacting with standing electromagnetic waves. We show by quantitative calculations that one can achieve a control of the tunneling period over an orders of magnitude range by changing the frequency difference of the waves by about 10% only. In this narrow parameter region, the mechanism of the tunneling oscillations evolves from the two-state to the three-state one.
View Article and Find Full Text PDF