Additive manufacturing of carbide materials has received significant attention in the past years due to the ability to fabricate complex structures over different length scales. However, the typical limitations for powder-laden inks, such as nozzle clogging, rheological and geometric constraints, particle sedimentation, light-scattering and absorbing phenomena, narrow the range of available processes to manufacture carbide materials via conventional particle-based systems. To address these shortcomings, we have developed a one-pot synthetic route for the preparation of sol-gel-based UV-photocurable formulations, aiming at the fabrication of titanium carbide/carbon nanocomposites using digital light processing printing, pointing to potential applications in the field of nuclear physics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2024
Adjustable wettability is important for various fields, such as droplet manipulation and controlled surface adhesion. Herein, we present high-resolution 3D stretchable structures with tunable superhydrophobicity, fabricated by a stereolithography-based printing process. The printing compositions comprise nonfluorinated monomers based on silicone urethane with dispersed hydrophobic silica particles.
View Article and Find Full Text PDFPolymers (Basel)
October 2024
A novel approach, i.e., Continuous Material Deposition on Filaments (CMDF), for the incorporation of active materials within 3D-printed structures is presented.
View Article and Find Full Text PDFSoft grippers are garnering increasing attention for their adeptness in conforming to diverse objects, particularly delicate items, without warranting precise force control. This attribute proves especially beneficial in unstructured environments and dynamic tasks such as food handling. Human hands, owing to their elevated dexterity and precise motor control, exhibit the ability to delicately manipulate complex food items, such as small or fragile objects, by dynamically adjusting their grasping configurations.
View Article and Find Full Text PDFAdditive manufacturing technologies based on stereolithography rely on initiating spatial photopolymerization by using photoinitiators activated by UV-visible light. Many applications requiring printing in water are limited since water-soluble photoinitiators are scarce, and their price is skyrocketing. On the contrary, thermal initiators are widely used in the chemical industry for polymerization processes due to their low cost and simplicity of initiation by heat at low temperatures.
View Article and Find Full Text PDFThe median survival time of patients with an aggressive brain tumor, glioblastoma, is still poor due to ineffective treatment. The discovery of androgen receptor (AR) expression in 56% of cases offers a potential breakthrough. AR antagonists, including bicalutamide and enzalutamide, induce dose-dependent cell death in glioblastoma and glioblastoma-initiating cell lines (GIC).
View Article and Find Full Text PDFThis review article presents a comprehensive overview of the latest advances in the field of 3D printable structures with self-healing properties. Three-dimensional printing (3DP) is a versatile technology that enables the rapid manufacturing of complex geometric structures with precision and functionality not previously attainable. However, the application of 3DP technology is still limited by the availability of materials with customizable properties specifically designed for additive manufacturing.
View Article and Find Full Text PDFFabrication of glass with complex geocd the low resolution of particle-based or fused glass technologies. Herein, a high-resolution 3D printing of transparent nanoporous glass is presented, by the combination of transparent photo-curable sol-gel printing compositions and digital light processing (DLP) technology. Multi-component glass, including binary (Al O -SiO ), ternary (ZnO-Al O -SiO , TiO -Al O -SiO ), and quaternary oxide (CaO-P O -Al O -SiO ) nanoporous glass objects with complex shapes, high spatial resolutions, and multi-oxide chemical compositions are fabricated, by DLP printing and subsequent sintering process.
View Article and Find Full Text PDFThe most prevalent materials used in the Additive Manufacturing era are polymers and plastics. Unfortunately, these materials are recognized for their negative environmental impact as they are primarily nonrecyclable, resulting in environmental pollution. In recent years, a new sustainable alternative to these materials has been emerging: Reversible Covalent Bond-Containing Polymers (RCBPs).
View Article and Find Full Text PDFNanocomposites are constructed from a matrix material combined with dispersed nanosized filler particles. Such a combination yields a powerful ability to tailor the desired mechanical, optical, electrical, thermodynamic, and antimicrobial material properties. Colloidal semiconductor nanocrystals (SCNCs) are exciting potential fillers, as they display size-, shape-, and composition-controlled properties and are easily embedded in diverse matrices.
View Article and Find Full Text PDFWe present a methodology for a high-throughput screening (HTS) of transcription factor libraries, based on bacterial cells and GFP fluorescence. The method is demonstrated on the LysR-type transcriptional regulator YhaJ, a key element in 2,4-dinitrotuluene (DNT) detection by bacterial explosives' sensor strains. Enhancing the performance characteristics of the YhaJ transcription factor is essential for future standoff detection of buried landmines.
View Article and Find Full Text PDFUV-curable 3D printing compositions for the fabrication of stretchable and flexible porous structures for soft robotics are presented. The stereolithography-based printing compositions are water-in-oil (W/O) emulsions in which water droplets are the pore-forming material, and the continuous phase is a stretchable polyurethane diacrylate (PUA). The porosity of the printed objects is controlled by the material's micro-porosity and by the macro-porosity obtained by a cellular design.
View Article and Find Full Text PDFSoft robotics is an exciting field of science and technology that enables robots to manipulate objects with human-like dexterity. Soft robots can handle delicate objects with care, access remote areas, and offer realistic feedback on their handling performance. However, increased dexterity and mechanical compliance of soft robots come with the need for accurate control of the position and shape of these robots.
View Article and Find Full Text PDFAlthough natural continuum structures, such as the boneless elephant trunk, provide inspiration for new versatile grippers, highly deformable, jointless, and multidimensional actuation has still not been achieved. The challenging pivotal requisites are to avoid sudden changes in stiffness, combined with the capability of providing reliable large deformations in different directions. This research addresses these two challenges by harnessing porosity at two levels: material and design.
View Article and Find Full Text PDFAn introduction to the themed collection on nanomaterials for printed electronics, featuring exciting research on a variety of nanomaterials and techniques used for printed electronics.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2023
Wearable electronics is an emerging field in academics and industry, in which electronic devices, such as smartwatches and sensors, are printed or embedded within textiles. The electrical circuits in electronics textile (e-textile) should withstand many cycles of bending and stretching. Direct printing of conductive inks enables the patterning of electrical circuits; however, while using conventional nanoparticle-based inks, printing onto the fabric results in a thin layer of a conductor, which is not sufficiently robust and impairs the reliability required for practical applications.
View Article and Find Full Text PDF[4 + 4] and [2 + 2] cycloadditions are unique reactions since they form and deform cycloadducts under irradiation due to their inherent reversible nature. Whereas promising for the field of recycling, these reactions usually suffer from two major shortcomings: long reaction durations (hours) and the requirement of high-intensity light (∼100 W/cm), typically at a short wavelength (<330 nm). We demonstrate several tetra-dentate catalysts that can overcome these fundamental limitations.
View Article and Find Full Text PDFHumans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited.
View Article and Find Full Text PDFPhotoelectrochemical water splitting is one of the sustainable routes to renewable hydrogen production. One of the challenges to deploying photoelectrochemical (PEC) based electrolyzers is the difficulty in the effective capture of solar radiation as the illumination angle changes throughout the day. Herein, we demonstrate a method for the angle-independent capture of solar irradiation by using transparent 3 dimensional (3D) lattice structures as the photoanode in PEC water splitting.
View Article and Find Full Text PDFSoft-tissue replacements are challenging due to the stringent compliance requirements for the implanted materials in terms of biocompatibility, durability, high wear resistance, low friction, and water content. Acrylate hydrogels are worth considering as soft tissue implants as they can be photocurable and sustain customized shapes through 3D bioprinting. However, acrylate-based hydrogels present weak mechanical properties and significant dimensional changes when immersed in liquids.
View Article and Find Full Text PDFACS Appl Mater Interfaces
May 2022
The application of flexible indium tin oxide (ITO)-free electrochromic devices (FCDs) has always been a research hotspot in flexible electronics. Recently, a silver nanowire (AgNW)-based transparent conductive film has raised great interest as an ITO-free substrate for FCDs. However, several challenges, such as the weak binding of AgNWs to the substrate, high junction resistance, and oxidation of AgNWs, remain.
View Article and Find Full Text PDFTwo-dimensional (2D) porous carbon-based composite nanosheets loaded with metal oxide nanoclusters are expected to be promising electrocatalysts for high-performance electrochemical sensors. However, for this complicated composite material, strict reaction conditions and complex synthesis steps limit its general application in electrochemical detection. Here we present a facile method to fabricate 2D mesoporous nitrogen-rich carbon nanosheets loaded with CeO nanoclusters (2D-mNC@CeO), for fabricating superoxide anions (O) electrochemical sensor.
View Article and Find Full Text PDFWood warping is a phenomenon known as a deformation in wood that occurs when changes in moisture content cause an unevenly volumetric change due to fiber orientation. Here we present an investigation of wood warped objects that were fabricated by 3D printing. Similar to natural wood warping, water evaporation causes volume decrease of the printed object, but in contrast, the printing pathway pattern and flow rate dictate the direction of the alignment and its intensity, all of which can be predesigned and affect the resulting structure after drying.
View Article and Find Full Text PDFAdv Colloid Interface Sci
January 2022
The review is focused on bimetallic nanoparticles composed of a core formed by low-cost metal having high electrical conductivity, such as Cu and Ni, and a protective shell composed of stable to oxidation noble metal such as Ag or Au. We present the chemical and physical approaches for synthesis of such particles, as well as the combination of the two, the stability to oxidation of core-shell nanoparticles at various conditions, and the formulation of conductive compositions and their application in conductive coatings and printed electronics.
View Article and Find Full Text PDF