Colloidal quantum dot (CQD) infrared (IR) photodetectors can be fabricated and operated with larger spectral tunability, fewer limitations in terms of cooling requirements and substrate lattice matching, and at a potentially lower cost than detectors based on traditional bulk materials. Silver selenide (AgSe) has emerged as a promising sustainable alternative to current state-of-the-art toxic semiconductors based on lead, cadmium, and mercury operating in the IR. However, an impeding gap in available absorption bandwidth for AgSe CQDs exists in the short-wave infrared (SWIR) region due to degenerate doping by the environment, switching the CQDs from intrinsic interband semiconductors in the near-infrared (NIR) to intraband absorbing CQDs in the mid-wave infrared (MWIR).
View Article and Find Full Text PDFSynthesis of strongly quantum confined and emissive CsPbBr perovskite nanocrystals with sizes <4 nm has proven challenging owing to fast nucleation and rapid growth. In this work, ultra-small blue-emitting (∼461 nm) CsPbBr nanocrystals with an average particle size of 3.2 nm are synthesized a high-temperature (170 °C) colloidal approach by controlling the supersaturation reaction conditions.
View Article and Find Full Text PDF