The concept of gap junctions and their role in intercellular communication has been known for around 50 years. Considerable progress has been made in understanding the fundamental biology of connexins in mediating gap junction intercellular communication (GJIC) and their role in various cellular processes including pathological conditions. However, this understanding has not led to development of advanced therapeutics utilizing GJIC.
View Article and Find Full Text PDFThe combination of cancer immunotherapy with efficient functionalized nanosystems has emerged as a beneficial treatment strategy and its use has increased rapidly. The roles of stimuli-responsive nanosystems and nanomedicine-based cancer immunotherapy, a subsidiary discipline in the field of immunology, are pivotal. The present era is witnessing rapid advancements in the use of nanomedicine as a platform for investigating novel therapeutic applications and modern intelligent healthcare management strategies.
View Article and Find Full Text PDFIn the current study, novel four electrode-based impedimetric biosensors have been fabricated using photolithography techniques and utilized to evaluate the cytotoxicity of tamoxifen on cervical cancer cell lines. The cell impedance was measured employing the electric cell-substrate impedance sensing (ECIS) method over the frequency range of 100 Hz to 1 MHz. The results obtained from impedimetric biosensors indicate that tamoxifen caused a significant reduction in the number of HeLa cells on the electrode surfaces in a dose-dependent manner.
View Article and Find Full Text PDFA fluorescent nanoprobe based on copper nanoclusters (CuNCs) has been developed for ratiometric detection of hydroxyl radicals (OH) and superoxide anion radicals (O). Two differently luminescent CuNCs, namely cyan-emissive poly(methacrylic acid)-protected copper nanoclusters (PCuNCs) and orange-emissive bovine serum albumin-protected CuNCs (BCuNCs), were conjugated to obtain a hybrid, dual-emission nanoprobe (PCuNCs-BCuNCs) with the corresponding peaks at 445 nm and 652 nm at an excitation wavelength of 360 nm. In particular, the fluorescence peak at 445 nm gradually enhanced with the incremental addition of OH and O.
View Article and Find Full Text PDF