Unlabelled: Human umbilical cord-derived mesenchymal stromal cells (UC-MSCs), which can be prepared in advance and are presumed to be advantageous for nerve regeneration, have potential as a cell source for Bio 3D conduits. The purpose of this study was to evaluate the nerve regeneration ability of Bio 3D conduits made from UC-MSCs using a rat sciatic nerve defect model.
Methods: A Bio 3D conduit was fabricated using a Bio 3D printer by placing UC-MSC spheroids into thin needles according to predesigned 3D data.
Background: The use of Bio 3D nerve conduits is a promising approach for peripheral nerve reconstruction. This study aimed to assess their safety in three patients with peripheral nerve defects in their hands.
Methods: We describe a single institution, non-blinded, non-randomised control trial conducted at Kyoto University Hospital.
Autologous nerve grafting is the gold standard method for peripheral nerve injury with defects. Artificial nerve conduits have been developed to prevent morbidity at the harvest site. However, the artificial conduit regeneration capacity is not sufficient.
View Article and Find Full Text PDFPreviously, we developed a Bio3D conduit fabricated from human fibroblasts and reported a significantly better outcome compared with artificial nerve conduit in the treatment of rat sciatic nerve defect. The purpose of this study is to investigate the long-term safety and nerve regeneration of Bio3D conduit compared with treatments using artificial nerve conduit and autologous nerve transplantation.We used 15 immunodeficient rats and randomly divided them into three groups treated with Bio3D ( = 5) conduit, silicon tube ( = 5), and autologous nerve transplantation ( = 5).
View Article and Find Full Text PDFBackground: We previously reported the development of a scaffold-free Bio three-dimensional (3D) nerve conduit from normal human dermal fibroblasts (NHDFs). The aim of this study was to investigate the regenerative mechanism of peripheral nerve cells using a Bio 3D conduit in a rat sciatic nerve defect model.
Methods: Bio 3D conduits composed of NHDFs were developed, and cell viability was evaluated using a LIVE/DEAD cell viability assay immediately before transplantation and 1-week post-surgery.
We previously reported that a nerve conduit created from fibroblasts promotes nerve regeneration in a rat sciatic nerve model. This study aims to determine whether a nerve conduit created from bone marrow stromal cells (BMSCs) can promote nerve regeneration. Primary BMSCs were isolated from femur bone marrow of two Lewis rats, and cells at passages 4-7 were used.
View Article and Find Full Text PDFAlthough autologous nerve grafting is widely accepted as the gold standard treatment for segmental nerve defects, harvesting autologous nerves is highly invasive and leads to functional loss of the ablated part. In response, artificial nerve conduits made of artificial materials have been reported, but the efficacy of the nerve regeneration still needs improvement. The purpose of this study is to investigate the efficacy and mechanism of the Bio three-dimensional (3D) conduit composed of xeno-free human induced pluripotent stem cell-derived mesenchymal stem cells (iMSCs).
View Article and Find Full Text PDFIntroduction: A Bio 3D printed nerve conduit was reported to promote nerve regeneration in a 5 mm nerve gap model. The purpose of this study was to fabricate Bio 3D nerve conduits suitable for a 10 mm nerve gap and to evaluate their capacity for nerve regeneration in a rat sciatic nerve defect model.
Materials And Methods: Eighteen F344 rats with immune deficiency (9-10 weeks old; weight, 200-250 g) were divided into three groups: a Bio 3D nerve conduit group (Bio 3D, n = 6), a nerve graft group (NG, n = 6), and a silicon tube group (ST, n = 6).
Autologous nerve grafting is widely accepted as the gold standard treatment for segmental nerve defects. To overcome the inevitable disadvantages of the original method, alternative methods such as the tubulization technique have been developed. Several studies have investigated the characteristics of an ideal nerve conduit in terms of supportive cells, scaffolds, growth factors, and vascularity.
View Article and Find Full Text PDFOsteochondral lesion is a major joint disease in humans. Therefore, this study was designed to investigate the regeneration of articular cartilage and subchondral bone, using three-dimensional constructs of autologous adipose tissue-derived mesenchymal stromal cells without any biocompatible scaffolds. Mesenchymal stromal cells were harvested by liposuction from seven pigs, isolated enzymatically, and expanded until construct creation.
View Article and Find Full Text PDFBackground: Although autologous nerve grafting is the gold standard treatment of peripheral nerve injuries, several alternative methods have been developed, including nerve conduits that use supportive cells. However, the seeding efficacy and viability of supportive cells injected in nerve grafts remain unclear. Here, we focused on a novel completely biological, tissue-engineered, scaffold-free conduit.
View Article and Find Full Text PDFBackground: In recent years, several methods have been developed for repairing full-thickness cartilage defects by tissue engineering using mesenchymal stem cells. Most of these use scaffolds to achieve sufficient thickness. However, considering the potential influence of scaffolds on the surrounding microenvironment, as well as immunological issues, it is desirable to develop a scaffold-free technique.
View Article and Find Full Text PDFBackground: Atypical fibroxanthoma (AFX) histologically mimics high-grade sarcoma in the skin, although it follows a benign clinical course. AFX occurs in the sun-exposed skin and for this reason, an association with ultraviolet light has long been suspected. Bax and Gadd45 are p53 effector proteins.
View Article and Find Full Text PDFThe c-myc intron binding protein 1 (MIBP1) is a gigantic zinc finger protein comprising 2,437 amino acids and belonging to the MHC binding protein (MBP) family. MIBP1 is suggested to be a transcription factor involved in various biological functions. We show here that MIBP1 represses c-myc transcription from the major promoter, P2.
View Article and Find Full Text PDF