UV-illuminated, paraelectric-phased potassium tantalate niobate (KTN) single crystals mitigate the beam deformation effects of femtosecond pulsed lasers in KTN deflectors. UV light illumination can control the amount of trapped charge present and minimize domain inversion in KTN deflectors, owing to its generated electron-hole pairs. This enables high beam quality deflection of fs pulsed lasers, with access to larger deflection angles, deflection speeds, and modulation switching ratios.
View Article and Find Full Text PDFWe report a new, to the best of our knowledge, type of SI-GaAs photoconductive semiconductor switch (PCSS) with nanostructures. Since light can enter from both the top and side surfaces of nanostructures, the effective penetration depth is significantly increased. Lower on-state resistance and a longer lock-on time have been achieved in the nonlinear mode with this design, as well as a lower triggering fluence in the linear mode.
View Article and Find Full Text PDFIn this Letter, we reported anomalous electro-optic potassium tantalate niobate (KTN) devices, in which both electrons and holes were injected into the KTN crystal via ultraviolet (UV) illumination-assisted charge injection. This could not only significantly enhance the performance of electro-optic devices (e.g.
View Article and Find Full Text PDFThis publisher's note contains corrections to Opt. Lett.44, 5557 (2019)OPLEDP0146-959210.
View Article and Find Full Text PDFMost applications of a ferroelectric-based electro-optic (EO) beam deflector have been limited by the high applied voltage. In this Letter, we report a dramatically increased EO beam deflection in relaxor ferroelectric potassium tantalate niobate (KTN) crystals by using the electric-field-enhanced permittivity. Due to the existence of the electric-field-induced phase transition in relaxor ferroelectric materials, the dielectric permittivity can be substantially increased by the applied electric field at a certain temperature.
View Article and Find Full Text PDFWe report a new type of photoconductive semiconductor switch (PCSS), consisting of a semi-insulating gallium arsenic (GaAs) substrate and a front-bonded ruby crystal. The 532 nm laser pulses from an Nd-YAG laser incident on the front surface of the ruby crystal. A portion of the laser pulse passes through the crystal and reaches the GaAs substrate, and the remaining portion of the laser pulse is absorbed by the ruby crystal.
View Article and Find Full Text PDFIn this paper, a high-speed non-mechanical two-dimensional KTN beam deflector is reported. The scanning mechanism is based on the combination of space charge controlled beam deflection and temperature gradient enabled beam deflection in a nanodisordered KTN crystal. Both theoretical analyses and experimental investigations are provided, which agree relatively well with each other.
View Article and Find Full Text PDFIn this paper, we report a three orders-of-magnitude increase in the speed of a space-charge-controlled KTN beam deflector achieved by eliminating the electric field-induced phase transition (EFIPT) in a nanodisordered KTN crystal. Previously, to maximize the electro-optic effect, a KTN beam deflector was operated at a temperature slightly above the Curie temperature. The electric field could cause the KTN to undergo a phase transition from the paraelectric phase to the ferroelectric phase at this temperature, which causes the deflector to operate in the linear electro-optic regime.
View Article and Find Full Text PDFThe electro-optic (EO) effect in nanodisordered potassium tantalate niobate (KTN) crystal is quantitatively investigated. It is found out that the EO coefficient of nanodisordered KTN crystal depends not only on the cooling temperature but also on the cooling rate. A larger EO coefficient can be obtained by employing a faster cooling rate.
View Article and Find Full Text PDFThe unique physical effect-Kovacs effect is explored to enhance the performance of EO modulators by employing the non-thermal equilibrium state nanodisordered KTN crystals created by super-cooling process, which can have a significant 3.5 fold increase in quadratic electro-optic coefficient. This enables to reduce the switching half wave voltage (almost by half) so that a broadband (~GHz range) and large field of view (+/-30 deg) electro-optic modulator can be realized with much lowered driving power, which can be very useful for a variety of applications: laser Q-switches, laser pulse shaping, high speed optical shutters and modulating retro reflectors.
View Article and Find Full Text PDFWe report laboratory test results of a long period grating (LPG) that can maintain a constant resonant peak depth over an enhanced tuning range when it is coated with an indium tin oxide (ITO) electrode that has optimized thickness and refractive index. The authors have experimentally demonstrated a LPG coated with ITO that can be tuned in excess of 200 nm with an ambient refractive index change of less than 0.01.
View Article and Find Full Text PDFWe present a multiple parameter integrated fiber sensor that can detect vector bending and ambient temperature simultaneously with a single asymmetric multimode fiber Bragg grating. Multimode Bragg gratings were fabricated in an all-silica core fiber by an infrared femtosecond laser, which showed multiple transmission dips in the transmission spectrum. Bending and ambient temperature fluctuations affect the shapes of multiple transmission dips in different ways.
View Article and Find Full Text PDFIn this paper, a large-depth-of-field projected fringe profilometry using a supercontinuum light source generated by launching femto second laser pulses into a highly nonlinear photonic crystal fiber is presented. Since the supercontinuum light has high spatial coherence and a broad spectral range (from UV to near infrared), a high power (hundreds of mW) point white light source can be employed to generate modulated fringe patterns, which offers following major advantages: (1) large-depth-of-field, (2) ease of calibration, and (3) little speckle noise (a major problem for the laser system). Thus, a highly accurate, large-depth-of-field projected fringe profilometer can be realized.
View Article and Find Full Text PDFUltra short long-period gratings (LPGs) fabricated using the electric arc discharge method are demonstrated with regular single-mode fibers. The gratings were as short as two periods, which were the shortest LPGs ever reported. The evolution of this short gratings and their characteristics are investigated in this paper.
View Article and Find Full Text PDFOne of the biggest problems of heart failure is the heart's inability to effectively pump blood to meet the body's demands, which may be caused by disease-induced alterations in contraction properties (such as contractile force and Young's modulus). Thus, it is very important to measure contractile properties at single cardiac myocyte level that can lay the foundation for quantitatively understanding the mechanism of heart failure and understanding molecular alterations in diseased heart cells. In this article, we report a novel single cardiac myocyte contractile force measurement technique based on moving a magnetic bead.
View Article and Find Full Text PDFA high-performance nonscanning Fourier-transform spectrometer is reported that is composed mainly of a Wollaston prism array and a two-dimensional photodetector array. It is a substantial improvement over existing Wollaston prism based nonscanning Fourier-transform spectrometers because it offers finer spectral resolution and smaller size. Such spectrometers will find important applications in remote chemical and biological sensing, environmental monitoring, medical diagnosis, etc.
View Article and Find Full Text PDFWe report on a novel chromatic confocal microscope system using supercontinuum white light generated from a photonic crystal fiber. The chromatic aberration of a pair of singlet lenses is employed to focus the different spectral components of the supercontinuum at different depth levels. An effective depth scanning range of 7 microm is demonstrated.
View Article and Find Full Text PDFA widely tunable long-period grating in single-mode fiber is analyzed by use of an ultrathin cladding layer and higher-order cladding mode coupling. The numerical simulation shows that a 225-nm tuning range in the newly designed ultrathin long-period grating (cladding thickness, 35 microm) with third-order cladding mode coupling can be obtained. The analyzed tuning range is seven times wider than those of the other known long-period gratings.
View Article and Find Full Text PDFA new design of a highly nonlinear dispersion-shifted fiber (HNDSF) with an effective area of 9.3 microm2 is presented. The three-dimensional beam propagation method combined with the Gaussian approximation method is used to analyze the new HNDSF.
View Article and Find Full Text PDFObjective: To investigate the cause of the gray appearance of the detached retina.
Methods: The effects of ex vivo bovine retinas and Scotch (3M, Minneapolis, Minn) tape on light scattering were predicted based on mathematical modeling and examined empirically on an optical bench. Images were collected with a CCD [charged-coupling device] camera connected to a microcomputer with an image grabber.