Exploring new low-cost and controllable synthesis methods for perovskite nanowires plays an important role in achieving their large-scale applications. However, there have been no studies on the synthesis of cesium lead halide nanowires using the electrodeposition method. In this study, the single-crystal mixed-halide W-CsPbIBr nanowires are first synthesized via a low-cost and controllable electrodeposition method.
View Article and Find Full Text PDFSelenium (Se) pollution is mainly caused by anthropogenic activities, and the resulting biosecurity concerns have garnered significant attention in recent years. Using one-compartmental toxicokinetic (TK) modelling, this study explored the kinetic absorption, sub-tissue distribution, and elimination processes of the main Se species (selenate, Se(VI)) in the cultivated aerobic soil of the earthworm Eisenia fetida. The bio-accessibility of earthworm-derived Se was assessed using an in vitro simulated gastrointestinal digestion test to evaluate its potential trophic risk.
View Article and Find Full Text PDFThis article investigates the radiation effects on as-deposited and annealed AlN films on 4H-SiC substrates under gamma-rays. The AlN films are prepared using plasma-enhanced-atomic-layer-deposition on an n-type 4H-SiC substrate. The AlN/4H-SiC MIS structure is subjected to gamma-ray irradiation with total doses of 0, 300, and 600 krad(Si).
View Article and Find Full Text PDFSurface engineering in perovskite solar cells, especially for the upper surface of perovskite, is widely studied. However, most of these studies have primarily focused on the interaction between additive functional groups and perovskite point defects, neglecting the influence of other parts of additive molecules. Herein, additives with -NH functional group are introduced at the perovskite surface to suppress surface defects.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
November 2023
Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry.
View Article and Find Full Text PDFHeavy metal contamination presents a profound threat to terrestrial biodiversity, yet the genetic adaptation and evolution of field organisms under persistent stress are poorly understood. In this study, the Cd-resistant earthworms Metaphire californica collected from the control (Meihua, MHC) and elevated-pollution (Lupu, LPC) pairwise sites were used to elucidate the underlying genetic mechanism. A 48-h acute test showed that LPC worms exhibited 2.
View Article and Find Full Text PDFOne-dimensional (1D) organic-inorganic hybrid perovskite nanowires (NWs) with well-defined structures possess superior optical and electrical properties for optoelectronic applications. However, most of the perovskite NWs are synthesized in air, which makes the NWs susceptible to water vapor, resulting in large amounts of grain boundaries or surface defects. Here, a template-assisted antisolvent crystallization (TAAC) method is designed to fabricate CHNHPbBr NWs and arrays.
View Article and Find Full Text PDFHazardous pollutants released into the real environment mostly own long-lasting cumulative characteristics and have progressively negative impacts on organisms, which are always neglected in laboratory toxicological tests. Here in this study, the different ecotoxicity of Ag nanoparticles (AgNPs) on earthworm Eisenia fetida was compared via various endpoints and transcriptional sequencing between the 28-day progressively repeated (from 60 to 80, final 100 mg/kg) and one-step (directly to 100 mg/kg) exposure. The results showed that earthworms under progressively repeated exposure showed significantly less biomass loss and reproductive inhibition, as well as lower Ag bioaccumulation (15.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Superhydrophobic surfaces possess enormous potential in various applications on account of their versatile functionalities. However, artificial superhydrophobic surfaces with ultralow solid/liquid adhesion often require complicated structure fabrication and surface fluorination processes. Here, we designed a superhydrophobic surface possessed of micro/nanoscale structures by employing facile and low-cost demolding and initiated chemical vapor deposition (iCVD) processes.
View Article and Find Full Text PDFHigh mechanical ductility and high mechanical strength are important for materials including polymers. Current methods to increase the ductility of polymers such as plasticization always cause a remarkable drop in the ultimate tensile strength. There is no report on the ductilization of polymers that can notably increase the elongation at break while not lowering the ultimate tensile strength.
View Article and Find Full Text PDFReproduction is a significant biological process for organisms responding to environmental stresses, however, little is known about the reproductive strategies of invertebrates under long-term exposure to contaminations. In this study, earthworm Metaphire californica (Kinberg, 1867) from contaminated fields with an increased metal gradient were collected to investigate their reproductive responses. The results showed heavy metals (Cd, Cu, Zn, and Pb) induced histological damage to earthworms' seminal vesicles, including tissue disorders and cavities, and decreases in mature spermatozoa.
View Article and Find Full Text PDFNatural and anthropogenic causes have promoted the rapid increase in environmental selenium (Se) levels, and the complex Se metabolism and dynamic in organisms make it challenging to evaluate the toxicity and ecological risks. In this study, the kinetics of selenite in earthworm Eisenia fetida were investigated based on toxicokinetic (TK) model (uptake-elimination phases: 14-14 days). The results showed the highest sub-tissue Se concentrations in pre-clitellum (PC), post-clitellum (PoC) parts, and total earthworms were 95.
View Article and Find Full Text PDFEnvironmental stressors are persistent but most toxicological studies always evaluate the risk via short-term acute toxicity, while continuous toxicity and biological resistance across generations are relatively unknown. Here, earthworm Eisenia fetida was laboratory-reared and exposed to historically contaminated soils with an increasing metal gradient (CK, LM and HM), to investigate cross-generation toxicity and resistance of F1 and F2 worms. The results elucidated that biomass and juvenile hatching rate of F2 E.
View Article and Find Full Text PDFToxicokinetic (TK) model provides a new approach to mechanistically elucidate the natural variation of metal handling strategy by adaptive and sensitive earthworm populations. Here, TK model was applied to explore the metal handling and resistance strategy of wild Metaphire californica with different historical exposure history through a 12-day re-exposure and another 12-day elimination incubation. M.
View Article and Find Full Text PDFSelenium (Se) is an essential microelement for human or animal health. At high concentrations, it can cause Se poisoning. Human activities (such as coal burning and mining) threaten soil biota by mobilizing high levels of Se.
View Article and Find Full Text PDFConductive stretchable hydrogels and ionogels consisting of ionic liquids can have interesting application as wearable strain and pressure sensors and bioelectrodes due to their soft nature and high conductivity. However, hydrogels have a severe stability problem because of water evaporation, whereas ionogels are not biocompatible or even toxic. Here, we demonstrate self-adhesive, stretchable, nonvolatile, and biocompatible eutectogels that can always form conformal contact to skin even during body movement along with their application as wearable strain and pressure sensors and biopotential electrodes for precise health monitoring.
View Article and Find Full Text PDFThe current study elucidates the impact of soil metal contamination on earthworm communities at the ecotype level. A total of 292 earthworms belonging to 13 species were collected in metal-contaminated soils from Wanshou (WSC), Daxing (DXC) and Lupu (LPC) plots (1.40-6.
View Article and Find Full Text PDFThe ultrashort linear antimicrobial tetrapeptide BRBR-NH with an unnatural residue biphenylalanine (B) has potent and rapid antimethicillin-resistant (MRSA) activity but lacks hemolytic activity. The anti-MRSA activity of BRBR-NH is 8-fold more potent than that of WRWR-NH and 16-fold more potent than that of FRFR-NH. However, how to influence their antimicrobial activities and mechanisms through the substitution of different aromatic hydrophobic residues is still unclear.
View Article and Find Full Text PDFSelenium (Se) has been recognized as an essential dietary nutrient for decades, and organic Se sources rather than inorganic ones are increasingly advocated as Se supplements. Earthworms have been studied as a feed additive and animal protein source for many yr. The aim of this study was to evaluate the effect of Se-enriched earthworm powder (SEP) on the antioxidative ability and immunity of laying hens.
View Article and Find Full Text PDFWearable dry electrodes are needed for long-term biopotential recordings but are limited by their imperfect compliance with the skin, especially during body movements and sweat secretions, resulting in high interfacial impedance and motion artifacts. Herein, we report an intrinsically conductive polymer dry electrode with excellent self-adhesiveness, stretchability, and conductivity. It shows much lower skin-contact impedance and noise in static and dynamic measurement than the current dry electrodes and standard gel electrodes, enabling to acquire high-quality electrocardiogram (ECG), electromyogram (EMG) and electroencephalogram (EEG) signals in various conditions such as dry and wet skin and during body movement.
View Article and Find Full Text PDFMicroplastics (MPs) have become a global environmental issue, however, the threats of metal-associated MPs to soil ecosystems and their involved processes have not been fully disclosed. In this study, a microcosm experiment with co-exposure of polyethylene and cadmium was conducted to determine their joint effects on the earthworm Eisenia fetida and to explore their relationship with the soil Cd availability that affected by MPs. The results showed that 28-day co-exposure of MPs and Cd significantly induced higher avoidance responses, weight loss and reduced reproduction of earthworms with the increasing content of pollutants.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2020
The development of highly crystalline perovskite films with large crystal grains and few surface defects is attractive to obtain high-performance perovskite solar cells (PSCs) with good device stability. Herein, we simultaneously improve the power conversion efficiency (PCE) and humid stability of the CHNHPbI (CHNH = MA) device by incorporating small organic molecule IT-4F into the perovskite film and using a buffer layer of PFN-Br. The presence of IT-4F in the perovskite film can successfully improve crystallinity and enhance the grain size, leading to reduced trap states and longer lifetime of the charge carrier, and make the perovskite film hydrophobic.
View Article and Find Full Text PDFBiochar has gained extensive attention due to its remediation role in soil pollution. However, its hazardous effects on the soil fauna in contaminated soil and its remediation efficiency affected by soil organisms are still obscure. The individual and combined effects of biochar and earthworms (Eisenia fetida) on soil properties, metal bioavailability, and earthworm fitness were investigated in historically heavy metal (HM)-contaminated soil.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Although ternary polymer solar cells have more potential in realizing a high power conversion efficiency than the binary counterparts, the mechanism of exciton separation and charge transport in such complicated ternary systems is far from being understood. Herein, we focus on this issue and give a clear view on the detailed roles of the ternary components contributing to the device performance, through utilizing the technique of pump-probe photoconductivity spectroscopy combined with transient photoluminescence spectroscopy, for the first time for ternary polymer solar cells. The ternary photovoltaic devices are based on PBDB-T:ITIC:PCBM and present a dramatic improvement in efficiency in comparison to that of the binary counterparts.
View Article and Find Full Text PDF