Publications by authors named "Shizeng Pei"

Abnormal lipid droplets (LDs) are known to be intimately bound with the occurrence and development of cancer, allowing LDs to be critical biomarkers for cancers. Aggregation-induced emission luminogens (AIEgens), with efficient reactive oxygen species (ROS) production performance, are prime photosensitizers (PSs) for photodynamic therapy (PDT) with imaging. Therefore, the development of dual-functional fluorescent probes with aggregation-induced emission (AIE) characteristics that enable both simultaneous LD monitoring and imaging-guided PDT is essential for concurrent cancer diagnosis and treatment.

View Article and Find Full Text PDF

Abnormal lipid droplets (LDs) have been recognized as critical factors in many diseases because they are metabolically active and dynamic organelles. Visualization for LD dynamic processes is fundamental for elucidating the relationship of LDs and related diseases. Herein, a red-emitting polarity-sensitive fluorescent probe (TPA-CYP) based on intramolecular charge transfer (ICT) was proposed, which was constructed by employing triphenylamine (TPA) and 2-(5,5-dimethyl-2-cyclohex-1-ylidene)propanedinitrile (CYP) as electron donor and acceptor moiety, respectively.

View Article and Find Full Text PDF

Fluorescent probes sensitive to microenvironment have always been fascinating due to their tremendous advantages in tracking changes in the pathophysiological microenvironment and potential application in the early diagnosis of related diseases. In this study, a fluorescent luminogen, triphenylamine-thiophene-rhodanine (TPA-TRDN), with high sensitivity to changes in polarity and viscosity was designed and could be applied to detecting human serum albumin (HSA) in actual urine, as well as lipid droplets (LDs) in cells and in vivo with turn-on red emission. TPA-TRDN could selectively detect HSA with fast response (10 min), superior sensitivity (LOD 0.

View Article and Find Full Text PDF

Environment-sensitive fluorescent probes have always been as forceful tools to understand the pathophysiological processes of relevant diseases. In this work, a new fluorescent probe with typical D-π-A structure was designed and showed high sensitivity to polarity and viscosity changes. DPAR could selectively detect human serum albumin (HSA) with turn-on orange emission in aqueous PBS buffer (pH 7.

View Article and Find Full Text PDF

To selectively detect HS based on the thiolysis reaction of 7-nitro-1,2,3-benzoxadiazole (NBD), amines attracted increasing attention since NBD amine is regarded as a new HS reaction site. Herein, a novel fluorescent probe, triphenylamine piperazine NBD (TPA-Pz-NBD), was developed. The results showed that it exhibited high selectivity towards HS via fluorescence spectroscopy and solution color.

View Article and Find Full Text PDF

A red emitting fluorescence probe, TPA-CPO, based on twisted intra-molecular charge transfer (TICT) was designed and synthesized. The spectra results displayed that TPA-CPO could sense HSA with excellent properties including significant fluorescence enhancement, long emission wavelength, large stokes shift, and wide linear range. The recognition mechanism was proved that TPA-CPO could bind to domain IB of HSA and its TICT process was suppressed by utilizing hydrophobic cavity and low polarity of HSA.

View Article and Find Full Text PDF

A turn-on hydrogen sulfide (HS) fluorescence probe, 4-{2-[4-(2,4-dinitrophenoxy)-phenyl]-vinyl}-1-methyl-pyridinium iodide (DPPVP), based on the thiolysis reaction of dinitrophenyl ethers (DNP) has been proposed. Pyridinium structure enhanced the water solubility of DPPVP, which could quickly respond to HS in absolute PBS solution and the fluorescence spectra of DPPVP at 520 nm were turned on by HS. The spectra results exhibited that DPPVP could sensitively detect HS with satisfied linear range (0-40 μM) and detection limit (13.

View Article and Find Full Text PDF