Publications by authors named "Shiyuan Ou"

Pesticide resistance and resurgence are serious problems often occurring simultaneously in the field. In our long-term study of a fenpropathrin-resistant strain of Tetranychus cinnabaribus, enhancement of detoxification and modified fecundity mechanisms were both observed. Here we investigate the network across these two mechanisms and find a key node between resistance and resurgence.

View Article and Find Full Text PDF

Differential expression of metabolic detoxification enzymes is an important mechanism involved in pesticide/acaricide resistance of mite pests. The competing endogenous RNA hypothesis offers a new opportunity to investigate post-transcriptional regulation of those genes. In this study, 4454 long non-coding RNAs were identified in the carmine spider mite Tetranychus cinnabarinus by transcriptome sequencing.

View Article and Find Full Text PDF

RNA interference (RNAi) is a potentially useful pest control method because of its high specificity. Silencing the expression of important RNAi target genes of pests will block important biological processes and reduce pest damage. Ecdysone is a unique arthropod hormone and the ecdysone receptor (EcR) is a key factor in molting pathway.

View Article and Find Full Text PDF

Background: Acaricide resistance is a serious problem in spider mites. Cyflumetofen is a new complex II inhibitor, whereas pyridaben acts at complex I and has been used for decades. Although cross-resistance between cyflumetofen and pyridaben has been observed in Tetranychus cinnabarinus, the specific mechanisms at play have not yet been investigated.

View Article and Find Full Text PDF

Background: Cyflumetofen is an outstanding acaricide with a novel mode of action. Tetranychus cinnabarinus, an important agricultural pest, is notorious for developing resistance to most classes of acaricides rapidly and results in enormous loss for the economy. Our previous study had pointed out glutathione S-transferase (GSTs) significantly contributed to the cyflumetofen-resistance formation in T.

View Article and Find Full Text PDF