Publications by authors named "Shiyu Gan"

Noninvasive and continuous monitoring of electrolytes in biofluids based on wearable biotechnology provides extensive health-related physiological information. The state-of-the-art wearable bioelectronic ion sensors depend on the organic ionophore-based solid-contact structure of potentiometric ion-selective electrodes. This structure contains two functional sensing layers, i.

View Article and Find Full Text PDF

Solid-contact ion-selective electrodes (SC-ISEs) with ionophore-based polymer-sensitive membranes have been the major devices in wearable sweat sensors toward electrolyte analysis. However, the toxicity of ionophores in ion-selective membranes (ISMs), for example, valinomycin (K ion carrier), is a significant challenge, since the ISM directly contacts the skin during the tests. Herein, we report coating a hydrogel of graphene oxide-poly(vinyl alcohol) (GO-PVA) on the ISM to fabricate hydrogel-based SC-ISEs.

View Article and Find Full Text PDF

Current potentiometric Cu sensors mostly rely on polymer-membrane-based solid-contact ion-selective electrodes (SC-ISEs) that constitute ion-selective membranes (ISM) and solid contact (SC) for respective ion recognition and ion-to-electron transduction. Herein, we report an ISM-free Cu-SC-ISE based on Cu-Mn oxide (CuMnO) as a bifunctional SC layer. The starting point is simplifying complex multi-interfaces for Cu-SC-ISEs.

View Article and Find Full Text PDF

Developing high-performance lignin anti-corrosive waterborne epoxy (WEP) coatings is conducive to the advancement of environmentally friendly coatings and the value-added utilization of lignin. In this work, a functionalized biomass waterborne epoxy composite coating is prepared using quaternized sodium lignosulfonate (QLS) as a functional nanofiller for mild carbon steel protection. The results showed that QLS has excellent dispersion and interface compatibility within WEP, and its abundant phenolic hydroxyl, sulfonate, quaternary ammonium groups, and nanoparticle structure endowed the coating with excellent corrosion inhibition and superior barrier properties.

View Article and Find Full Text PDF

Solid-contact ion-selective electrodes (SC-ISEs) feature miniaturization and integration that have gained extensive attention in non-invasive wearable sweat electrolyte sensors. The state-of-the-art wearable SC-ISEs mainly use polyethylene terephthalate, gold and carbon nanotube fibers as flexible substrates but suffer from uncomfortableness, high cost and biotoxicity. Herein, we report carbon fiber-based SC-ISEs to construct a four-channel wearable potentiometric sensor for sweat electrolytes monitoring (Na/K/pH/Cl).

View Article and Find Full Text PDF

Here, we propose a fast and sensitive coulometric signal transduction method for ion-selective electrodes (ISEs) by utilizing a two-compartment cell. A potassium ion-selective electrode (K-ISE) was connected as reference electrode (RE) and placed in the sample compartment. A glassy carbon (GC) electrode coated with poly(3,4-ethylenedioxythiophene) (GC/PEDOT), or reduced graphene oxide (GC/RGO), was connected as working electrode (WE) and placed in the detection compartment together with a counter electrode (CE).

View Article and Find Full Text PDF

The level of hydrogen ions in sweat is one of the most important physiological indexes for the health state of the human body. As a type of two-dimensional (2D) material, MXene has the advantages of superior electrical conductivity, a large surface area, and rich functional groups on the surface. Herein, we report a type of TiCT-based potentiometric pH sensor for wearable sweat pH analysis.

View Article and Find Full Text PDF

Solid-contact ion-selective electrodes are a type of ion measurement devices that have been focused in wearable biotechnology based on the features of miniaturization and integration. However, the solid-contact reference electrodes (SC-REs) remain relatively less focused compared with numerous working (or indicator) electrodes. Most SC-REs in wearable sensors rely on Ag/AgCl reference electrodes with solid electrolytes, for example, the hydrophilic electrolyte salts in polymer matrix, but face the risk of electrolyte leakage.

View Article and Find Full Text PDF

Single-entity collisional electrochemistry (SECE) can capture physicochemical information at the single entity level. In the present work, we systematically studied in-situ generation and detection of single anionic ionosomes via SECE combined with a miniaturized interface between two immiscible electrolyte solutions (ITIES). Ionosome is an ionic-bilayer encapsulated nanoscopic water cluster/droplet that carries a net charge.

View Article and Find Full Text PDF

Solid-contact ion-selective electrodes (SC-ISEs) exhibit great potential in the detection of routine and portable ions which rely on solid-contact (SC) materials for the transduction of ions to electron signals. Carbon-based materials are state-of-the-art SC transducers due to their high electrical double-layer (EDL) capacitance and hydrophobicity. However, researchers have long searched for ways to enhance the interfacial capacitance in order to improve the potential stability.

View Article and Find Full Text PDF

The determination of ammonium ions (NH) is of significance to environmental, agriculture, and human health. Potentiometric NH sensors based on solid-contact ion selective electrodes (SC-ISEs) feature point-of-care testing and miniaturization. However, the state-of-the-art SC-ISEs of NH during the past 20 years strongly rely on the organic ammonium ionophore-based ion selective membrane (ISM), typically by nonactin for the NH recognition.

View Article and Find Full Text PDF

Wearable sensors reflect the real-time physiological information and health status of individuals by continuously monitoring biochemical markers in biological fluids, including sweat, tears and saliva, and are a key technology to realize portable personalized medicine. Flexible electrochemical pH sensors can play a significant role in health since the pH level affects most biochemical reactions in the human body. pH indicators can be used for the diagnosis and treatment of diseases as well as the monitoring of biological processes.

View Article and Find Full Text PDF

Current solid potentiometric ion sensors mostly rely on polymeric-membrane-based, solid-contact, ion-selective electrodes (SC-ISEs). However, anion sensing has been a challenge with respect to cations due to the rareness of anion ionophores. Classic metal/metal insoluble salt electrodes (such as Ag/AgCl) without an ion-selective membrane (ISM) offer an alternative.

View Article and Find Full Text PDF
Article Synopsis
  • Solid-contact ion-selective electrodes (SC-ISEs) are advanced devices known for their quick response and ability to analyze ions online, featuring a solid-contact layer and an ion-selective membrane layer.
  • Current challenges with SC-ISEs include the formation of a water layer at the boundary and leaking of membrane components, primarily linked to the ion-selective membranes.
  • This study introduces a new type of SC-ISE using traditional Li-ion battery materials, achieving effective lithium sensing without an ion-selective membrane, resulting in improved stability and comparable sensitivity to existing SC-ISEs.
View Article and Find Full Text PDF

Being closely associated with a variety of physiological and pathological processes, matrix metalloproteinases (MMPs) are useful as potential targets for drug therapy and informative markers for disease diagnosis. On the basis of the electrochemically induced grafting of ferrocenyl polymers and the proteolytic cleavage of recognition peptide, a novel electrochemical sensor is presented in this work for the highly specific interrogation of MMP activities at ultralow levels. The recognition peptide, to be immobilized via the N-terminus, is free of carboxyl group.

View Article and Find Full Text PDF

As a single-chain glycoprotein with endopeptidase activity, the prostate-specific antigen (PSA) is valuable as an informative serum marker in diagnosing, staging, and prognosis of prostate cancer. In this report, an electrochemical biosensor based on the target-induced cleavage of a specific peptide substrate (PSA peptide) is designed for the highly selective detection of PSA at the femtomolar level, using electrochemically controlled atom transfer radical polymerization (eATRP) as a method for signal amplification. The PSA peptides, without free carboxyl sites, are attached to the gold surface via the -terminal cysteine residue.

View Article and Find Full Text PDF

Wearable potentiometric ion sensors are attracting attention for real-time ion monitoring in biological fluids. One of the key challenges lies in keeping the analytical performances under a stretchable state. Herein, we report a highly stretchable fiber-based ion-selective electrode (ISE) prepared by coating an ion-selective membrane (ISM) on a stretchable gold fiber electrode.

View Article and Find Full Text PDF

As one of the most important proteolytic enzymes, trypsin is useful as a reliable and specific biomarker for the diagnosis of pancreatitis and other pathological conditions. In this paper, a novel signal-on electrochemical biosensor based on the use of electrochemically controlled grafting of polymers as an amplification strategy is described for the ultrasensitive assay of trypsin activity. The carboxyl-group-free peptide, serving as the substrate for the recognition of trypsin, is first immobilized via its N-terminus.

View Article and Find Full Text PDF

Wearable sensors based on solid-contact ion-selective electrodes (SC-ISEs) are currently attracting intensive attention in monitoring human health conditions through real-time and non-invasive analysis of ions in biological fluids. SC-ISEs have gone through a revolution with improvements in potential stability and reproducibility. The introduction of new transducing materials, the understanding of theoretical potentiometric responses, and wearable applications greatly facilitate SC-ISEs.

View Article and Find Full Text PDF

Metallic selenides have been widely investigated as promising electrode materials for metal-ion batteries based on their relatively high theoretical capacity. However, rapid capacity decay and structural collapse resulting from the larger-sized Na /K greatly hamper their application. Herein, a bimetallic selenide (MoSe /CoSe ) encapsulated in nitrogen, sulfur-codoped hollow carbon nanospheres interconnected reduced graphene oxide nanosheets (rGO@MCSe) are successfully designed as advanced anode materials for Na/K-ion batteries.

View Article and Find Full Text PDF

As a serine protease, thrombin is a pivotal component in coagulation cascade and has been frequently screened as an informative biomarker for the diagnosis of coagulation disorder-related diseases. Herein, a "signal-on" electrochemical biosensor is described for the highly sensitive and selective detection of thrombin activity, by exploiting a thrombin-specific substrate peptide (Tb peptide) as the recognition element and reversible addition-fragmentation chain transfer (RAFT) polymerization for signal amplification. Specifically, the carboxyl-group-free Tb peptides are self-assembled onto gold electrode surface via the N-terminal cysteine residue and are used for the specific recognition of thrombin molecules.

View Article and Find Full Text PDF

Controlled/"living" radical polymerization (CLRP) techniques, such as atom transfer radical polymerization (ATRP), reversible addition-fragmentation chain transfer (RAFT) polymerization, and their variants, have now emerged as a novel class of signal amplification strategies and they have attracted growing attention in biosensing of clinically relevant biomolecules. Through the CLRP-mediated de novo formation of polymer chains, a large amount of signaling probes (e.g.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries have been disclosed as one of the most promising energy storage systems. However, the low utilization of sulfur, the detrimental shuttling behavior of polysulfides, and the sluggish kinetics in electrochemical processes, severely impede their application. Herein, 3D hierarchical nitrogen-doped carbon nanosheets/molybdenum phosphide nanocrystal hollow nanospheres (MoP@C/N HCSs) are introduced to Li-S batteries via decorating commercial separators to inhibit polysulfides diffusion.

View Article and Find Full Text PDF

Sensitive detection of biomolecules is integral for biomarker screening and early diagnosis. Herein, surface-initiated reversible-addition-fragmentation-chain-transfer (SI-RAFT) polymerization is exploited as a novel amplification strategy for highly sensitive electrochemical biosensing of DNA. Briefly, thiol-terminated peptide nucleic acid (PNA) probes are first self-assembled onto a gold electrode for the specific capture of target-DNA fragments; the carboxyl-group-containing dithiobenzoate 4-cyano-4-(phenylcarbonothioylthio)pentanoic acid (CPAD) is then tethered to the hybridized PNA-DNA heteroduplexes by means of the well-established carboxylate-Zr-phosphate chemistry and serves as the chain-transfer agent (CTAs) for subsequent SI-RAFT polymerization, which is thermally initiated in the presence of 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (VA-044) as the free-radical initiator and ferrocenylmethyl methacrylate (FcMMA) as the monomer.

View Article and Find Full Text PDF

The upgrading of biomass into sustainable and valuable fine chemicals is an alternative to the use of state-of-the-art petrochemicals. The conversion of 5-hydroxymethylfurfural (HMF) biomass derivative into 2,5-furandicarboxylic acid (FDCA) has been recognized as an economical and green approach to replace the current polyethylene terephthalate based plastic industry. However, this reaction mostly relies on noble-metal-based catalysts for the sluggish aerobic oxidation of alcohol groups.

View Article and Find Full Text PDF