Cuproptosis is a new kind of cell death that depends on delivering copper ions into mitochondria to trigger the aggradation of tricarboxylic acid (TCA) cycle proteins and has been observed in various cancer cells. However, whether cuproptosis occurs in cancer stem cells (CSCs) is unexplored thus far, and CSCs often reside in a hypoxic tumor microenvironment (TME) of triple negative breast cancers (TNBC), which suppresses the expression of the cuproptosis protein FDX1, thereby diminishing anticancer efficacy of cuproptosis. Herein, a ROS-responsive active targeting cuproptosis-based nanomedicine CuET@PHF is developed by stabilizing copper ionophores CuET nanocrystals with polydopamine and hydroxyethyl starch to eradicate CSCs.
View Article and Find Full Text PDFCoating and single crystal are two common strategies for cobalt-free nickel-rich layered oxides to solve its poor rate performance and cycle stability. However, the action mechanism of different modification protocols to suppress the attenuation are unclear yet. Herein, the LiMoO layer-coated polycrystalline LiNiMnO (1.
View Article and Find Full Text PDFCuproptosis-based cancer nanomedicine has received widespread attention recently. However, cuproptosis nanomedicine against pancreatic ductal adenocarcinoma (PDAC) is severely limited by cancer stem cells (CSCs), which reside in the hypoxic stroma and adopt glycolysis metabolism accordingly to resist cuproptosis-induced mitochondria damage. Here, we leverage hyperbaric oxygen (HBO) to regulate CSC metabolism by overcoming tumor hypoxia and to augment CSC elimination efficacy of polydopamine and hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@PH NPs).
View Article and Find Full Text PDFLayered ternary oxide LiNiMnCoO is a promising cathode candidate for high-energy lithium-ion batteries (LIBs). However, the capacity of LIBs is significantly restricted by several factors, including the repeated dissolution-regeneration of the interfacial film at high temperatures, the dissolution of transition metals, and the increase of impedance. Herein, a new precycling strategy in suitable voltage scope at room temperature is proposed to construct a uniform, thermally stable, and insoluble cathode-electrolyte interface (CEI), which helps to maintain stable cycling performances at high temperatures.
View Article and Find Full Text PDFAberrant tumor mechanical microenvironment (TMME), featured with overactivated cancer-associated fibroblasts (CAFs) and excessive extracellular matrix (ECM), severely restricts penetration and accumulation of cancer nanomedicines, while mild-hyperthermia photothermal therapy (mild-PTT) has been developed to modulate TMME. However, photothermal agents also encounter the barriers established by TMME, manifesting in limited penetration and heterogeneous distribution across tumor tissues and ending with attenuated efficiency in TMME regulation. Herein, it is leveraged indocyanine green (ICG)-loaded soft nanogels with outstanding deformability, for efficient tumor penetration and uniform distribution, in combination with mild-PTT to achieve potent TMME regulation by inhibiting CAFs and degrading ECM.
View Article and Find Full Text PDFHigh reactive oxygen species (ROS) levels provide a therapeutic opportunity to eradicate cancer stem cells (CSCs), a population of cells responsible for tumorigenesis, progression, metastasis, and recurrence. However, enhanced antioxidant systems in this population of cells attenuate ROS-inducing therapies. Here, we developed a nanoparticle-assisted combination therapy to eliminate CSCs by employing photodynamic therapy (PDT) to yield ROS while disrupting ROS defense with glutaminolysis inhibition.
View Article and Find Full Text PDFSi@C as a high specific capacity anode material for lithium batteries (LIBs) has attracted a lot of attention. However, the severe volume change during lithium de-embedding causes repeated rupture/reconstruction of the solid electrolyte interphase (SEI), resulting in poor cycling stability of the Si-based battery system and thus hindering its application in commercial batteries. Using electrolyte additives to form an excellent SEI is considered to be a cost-effective method to meet this challenge.
View Article and Find Full Text PDFPhotodynamic therapy with reactive oxygen species production is a prospective treatment to combat cancer stem cells (CSCs). However, the innate drawbacks, including short lifetime and diffusion distance of reactive oxygen species and hypoxia within solid tumors, have become bottlenecks for clinical applications of photodynamic therapy. Here, we develop a mitochondria-targeting hemicyanine-oleic acid conjugate (CyOA), which can self-assemble into supramolecular nanoparticles (NPs) without any exogenous excipients.
View Article and Find Full Text PDFGlioblastoma (GBM) is a lethal cancer with limited therapeutic options. Dendritic cell (DC)-based cancer vaccines provide a promising approach for GBM treatment. Clinical studies suggest that other immunotherapeutic agents may be combined with DC vaccines to further enhance antitumor activity.
View Article and Find Full Text PDFThe formation of a compact and stable cathode electrolyte interphase (CEI) film is a promising way to improve the high voltage resistance of lithium-ion batteries (LIBs). However, challenges arise due to the corrosion of hydrogen fluoride (HF) and the dissolution of transition metal ions (TMs) in harsh conditions. To address this issue, researchers have constructed an anion-derived CEI film enriched with LiF and LiPOF soluble product on the surface of LiNiMnO (LNMO) cathode in highly concentrated electrolytes (HCEs).
View Article and Find Full Text PDFTumor starvation induced by intratumor glucose depletion emerges as a promising strategy for anticancer therapy. However, its antitumor potencies are severely compromised by intrinsic tumor hypoxia, low delivery efficiencies, and undesired off-target toxicity. Herein, a multifunctional cascade bioreactor (HCG), based on the self-assembly of pH-responsive hydroxyethyl starch prodrugs, copper ions, and glucose oxidase (GOD), is engineered, empowered by hyperbaric oxygen (HBO) for efficient cooperative therapy against aggressive breast cancers.
View Article and Find Full Text PDFCancer stem cells (CSCs) have been blamed as the main culprit of tumor initiation, progression, metastasis, chemoresistance, and recurrence. However, few anti-CSCs agents have achieved clinical success so far. Here we report a novel derivative of lonidamine (LND), namely HYL001, which selectively and potently inhibits CSCs by targeting mitochondria, with 380-fold and 340-fold lower IC values against breast cancer stem cells (BCSCs) and hepatocellular carcinoma stem cells (HCSCs), respectively, compared to LND.
View Article and Find Full Text PDFNanomedicine has been developed for cancer therapy over several decades, while rapid clearance from blood circulation by reticuloendothelial system (RES) severely limits nanomedicine antitumour efficacy. We design a series of nanogels with distinctive stiffness and investigate how nanogel mechanical properties could be leveraged to overcome RES. Stiff nanogels are injected preferentially to abrogate uptake capacity of macrophages and temporarily block RES, relying on inhibition of clathrin and prolonged liver retention.
View Article and Find Full Text PDFCancer stem cells (CSCs), enabled to self-renew, differentiate, and initiate the bulk tumor, are recognized as the culprit of treatment resistance, metastasis, and recurrence. Simultaneously eradicating CSCs and bulk cancer cells is crucial for successful cancer therapy. Herein, we reported that doxorubicin (Dox) and erastin co-loaded hydroxyethyl starch-polycaprolactone nanoparticles (DEPH NPs) eliminated CSCs and cancer cells by regulating redox status.
View Article and Find Full Text PDFCancer stem cells (CSCs) have been recognized as the culprit for tumor progression, treatment resistance, metastasis, and recurrence while redox homeostasis represents the Achilles' Heel of CSCs. However, few drugs or formulations that are capable of elevating oxidative stress have achieved clinical success for eliminating CSCs. Here, we report hydroxyethyl starch stabilized copper-diethyldithiocarbamate nanoparticles (CuET@HES NPs), which conspicuously suppress CSCs not only in vitro but also in numerous tumor models in vivo.
View Article and Find Full Text PDFThe electrode/electrolyte interface (EEI) is a research hotspot in lithium-ion batteries, while the electrolyte solvation complex can be regarded as a factor that cannot be ignored in determining the performance of the EEI. From the perspective of the electrolyte solvation complex, this review summarizes the effects of solvation complexes on the composition of an EEI film and the Li desolvation process, and further clarifies the internal mechanism of the electrolyte composition controlling solvation chemistry. Finally, combined with doubtful points that are not comprehensively considered in the regulation of solvated complexes, this review puts forward some cutting-edge views, which are of great significance for future guidance in improving the performance of lithium-ion batteries.
View Article and Find Full Text PDFDespite the various vaccines that have been developed to combat the coronavirus disease 2019 (COVID-19) pandemic, the persistent and unpredictable mutations of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) require innovative and unremitting solutions to cope with the resultant immune evasion and establish a sustainable immune barrier. Here we introduce a vaccine-delivery system with a combination of a needle-free injection (NFI) device and a SARS-CoV-2-Spike-specific mRNA-Lipid Nanoparticle (LNP) vaccine. The benefits are duller pain and a significant increase of immunogenicity compared to the canonical needle injection (NI).
View Article and Find Full Text PDFStimulating indigenous microbes to reduce aqueous U(VI) to insoluble U(IV) by adding an electron donor has been applied as an applicable strategy to remediate uranium-contaminated groundwater in situ. However, biogenic U(IV) minerals are susceptible to oxidative remobilization after exposure to oxygen. To enhance the stability of the end product, glycerol phosphate (GP) was selected to treat artificial uranium-containing groundwater at different pH values (i.
View Article and Find Full Text PDFEngineering the solid electrolyte interphase (SEI) that forms on the electrode is crucial for achieving high performance in metal-ion batteries. However, the mechanism of SEI formation resulting from electrolyte decomposition is not fully understood at the molecular scale. Herein, a new strategy of switching electrolyte to tune SEI properties is presented, by which a unique and thinner SEI can be pre-formed on the graphite electrode first in an ether-based electrolyte, and then the as-designed graphite electrode can demonstrate extremely high-rate capabilities in a carbonate-based electrolyte, enabling the design of fast-charging and wide-temperature lithium-ion batteries (e.
View Article and Find Full Text PDFImmune-checkpoint inhibitor-based combination immunotherapy has become a first-line treatment for several major types of cancer including hepatocellular carcinoma (HCC), renal cell carcinoma, lung cancer, cervical cancer, and gastric cancer. Combination immunotherapy counters several immunosuppressive elements in the tumor microenvironment and activates multiple steps of the cancer-immunity cycle. The anti-PD-L1 antibody, atezolizumab, plus the anti-vascular endothelial growth factor antibody, bevacizumab, represents a promising class of combination immunotherapy.
View Article and Find Full Text PDFThe optimizing method of electrolyte formulation is always vital for the development of high-performance lithium-ion batteries. Traditional optimization methods are mainly aimed at the optimization of the electrolyte composition type, and less attention is paid to the optimization of the composition proportion in a certain electrolyte formulation. In this paper, in order to balance the relationship between aluminum (Al) foil corrosion inhibition and battery electrochemical performance, the electrolyte system LiFSI-LiBOB-EC/DEC/EMC (1 : 1 : 1, by volume) was optimized by combining the simplex method, normalization and electrochemical testing.
View Article and Find Full Text PDFPerennial ryegrass (Lolium perenne L.) was planted in uranium-contaminated soil mixtures supplemented with different amounts of citric acid to investigate the defense strategies of perennial ryegrass against U and the enhanced mechanism of citric acid on the remediation efficiency in the laboratory. The uranium content in the plant tissues showed that the roots were the predominant tissue for uranium accumulation.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2021
It has been researched that highly concentrated electrolytes (HCEs) can solve the problem of the excessive decomposition of dilute electrolytes at a high voltage, but the mechanism is not clear. In this work, the antioxidation mechanism of HCE at a high voltage was investigated by in situ electrochemical tests and theoretical calculations from the perspective of the solvation structure and physicochemical property. The results indicate that compared with the dilute electrolyte, the change of solvation structures in HCE makes more PF anions easier to be oxidized prior to the dimethyl carbonate solvents, resulting in a more stable cathode-electrolyte interphase (CEI) film.
View Article and Find Full Text PDFNi-rich LiNiCoAlO materials have been successfully applied in electric vehicles due to the merits of high energy density which can meet the requirements for driving range. Nevertheless, the electrochemical performances of Ni-rich materials are limited by their structural instability. Herein, LiNiCoAlO materials with the concentration-gradient structure of a Ni-rich core and a Co-rich surface were synthesized.
View Article and Find Full Text PDF