Publications by authors named "Shiyi Xiao"

Oocyte maturation is important for fertility in mammals, since the quality of oocytes directly affects fertilization, embryo attachment and survival. Nivalenol is widely present in nature as a common toxin that contaminates grain and feed, and it has been reported to cause acute toxicity, immunotoxicity, reproductive toxicity and carcinogenic effects. In this study, we explored the impact of nivalenol on the porcine oocyte maturation and its possible mechanisms.

View Article and Find Full Text PDF

Multispectral stealth technology including terahertz (THz) band will play an increasingly important role in modern military and civil applications. Here, based on the concept of modularization design, two kinds of flexible and transparent metadevices were fabricated for multispectral stealth, covering the visible, infrared (IR), THz, and microwave bands. First, three basic functional blocks for IR, THz, and microwave stealth are designed and fabricated by using flexible and transparent films.

View Article and Find Full Text PDF

Designing perfect anomalous reflectors is crucial for achieving many metasurface-based applications, but available design approaches for the cases of extremely large bending angles either require unrealistic gain-loss materials or rely on brute-force optimizations lacking physical guidance. Here, we propose a deterministic approach to design metasurfaces that can reflect impinging light to nonspecular directions with almost 100% efficiencies. With both incident and out-going far-field waves given, we can retrieve the surface-impedance profile of the target metadevice by matching boundary conditions with allowed near-field modes added self-consistently and then construct the metadevices deterministically based on passive meta-atoms exhibiting local responses.

View Article and Find Full Text PDF

Multifunctional terahertz (THz) devices in transmission mode are highly desired in integration-optics applications, but conventional devices are bulky in size and inefficient. While ultra-thin multifunctional THz devices are recently demonstrated based on reflective metasurfaces, their transmissive counterparts suffer from severe limitations in efficiency and functionality. Here, based on high aspect-ratio silicon micropillars exhibiting wide transmission-phase tuning ranges with high transmission-amplitudes, a set of dielectric metasurfaces is designed and fabricated to achieve efficient spin-multiplexed wavefront controls on THz waves.

View Article and Find Full Text PDF

Dynamical controls on terahertz (THz) wavefronts are crucial for many applications, but available mechanism requests tunable elements with sub-micrometer sizes that are difficult to find in the THz regime. Here, different from the mechanism, we propose an alternative approach to construct wavefront-control meta-devices combining specifically designed metasurfaces and graphene layers. Coupled-mode-theory (CMT) analyses reveal that graphene serves as a tunable loss to drive the whole meta-device to transit from one functional phase to another passing through an intermediate regime, exhibiting distinct far-field (FF) reflection wavefronts.

View Article and Find Full Text PDF

Activation of O is a crucial step in oxidation processes. Here, the concept of sp-hybridized C≡C triple bonds as an electron donor is adopted to develop highly active and stable catalysts for molecular oxygen activation. We demonstrate that the neighboring sp-hybridized C and Cu sites on the interface of the sub-nanocluster CuO/graphdiyne are the key structures to effectively modulate the O activation process in the bridging adsorption mode.

View Article and Find Full Text PDF

Reflecting light to a predetermined nonspecular direction is an important ability of metasurfaces, which is the basis for a wide range of applications (e.g., beam steering/splitting and imaging).

View Article and Find Full Text PDF

As a powerful tool for studying molecular dynamics in bioscience, single-molecule fluorescence detection provides dynamical information buried in ensemble experiments. Fluorescence in the near-infrared (NIR) is particularly useful because it offers higher signal-to-noise ratio and increased penetration depth in tissue compared with visible fluorescence. The low quantum yield of most NIR fluorophores, however, makes the detection of single-molecule fluorescence difficult.

View Article and Find Full Text PDF

Coupled photonic systems exhibit intriguing optical responses attracting intensive attention, but available theoretical tools either cannot reveal the underlying physics or are empirical in nature. Here, we derive a rigorous theoretical framework from first principles (i.e.

View Article and Find Full Text PDF

Transmissive metasurfaces have provided an efficient platform to manipulate electromagnetic (EM) waves, but previously adopted multilayer meta-atoms are too thick and/or the design approach fully relies on brute-force simulations without physical understandings. Here, based on coupled-mode theory (CMT) analyses on multilayer meta-atoms of distinct types, it is found that meta-atoms of a specific type only allows the phase coverage over a particular range, thus suitable for polarization-control applications. However, combinations of meta-atoms with distinct types are necessary for building ultra-thin wavefront-control meta-devices requiring 360° phase coverage.

View Article and Find Full Text PDF

Although surface plasmon polaritons (SPPs) have been intensively studied in past years, the transmission/reflection properties of SPPs at an interface between two plasmonic media are still not fully understood. In this article, we employ a mode expansion method (MEM) to systematically study such a problem based on a model system jointing two superlattices, each consisting of a periodic stacking of dielectric and plasmonic slabs with different material properties. Such a generic model can represent two widely used plasmonic structures (i.

View Article and Find Full Text PDF

Metasurfaces in a metal-insulator-metal configuration have been widely used in photonics, with applications ranging from perfect absorption to phase modulation, but why and when such structures can realize what functionalities are not yet fully understood. Here, we establish a complete phase diagram in which the optical properties of such systems are fully controlled by two simple parameters (i.e.

View Article and Find Full Text PDF

The surface plasmon polariton is an emerging candidate for miniaturizing optoelectronic circuits. Recent demonstrations of polarization-dependent splitting using metasurfaces, including focal-spot shifting and unidirectional propagation, allow us to exploit the spin degree of freedom in plasmonics. However, further progress has been hampered by the inability to generate more complicated and independent surface plasmon profiles for two incident spins, which work coherently together for more flexible and tunable functionalities.

View Article and Find Full Text PDF

Combining near-field measurements with coupled-mode-theory analyses, we unambiguously identify all resonant modes in coupled systems containing two photonic resonators. Based on this technique, we perform extensive microwave experiments to study how the inter-resonator coupling varies against various configurational parameters. Our experimental results quantitatively verify a previously established effective model for photonic coupling, and highlight the importance of quadrupole terms in certain situations.

View Article and Find Full Text PDF
Article Synopsis
  • Optical bistability usually happens with high optical thickness or light power, but this study shows it can occur with very low power in certain plasmonic metamaterials.
  • The research focuses on ultrathin holey metallic plates filled with nonlinear materials, and the team performed simulations at a frequency of 0.2 THz.
  • They also created an analytical model to explain the physics behind this phenomenon, offering design guidelines for future research.
View Article and Find Full Text PDF

Optic-null medium (ONM), an electromagnetic (EM) space representing optically nothing, has many interesting applications but is difficult to realize practically due to its extreme EM parameters. Here we demonstrate that a holey metallic plate with periodic array of subwavelength apertures can well mimic an ONM. We develop an effective-medium theory to extract the EM parameters of the designed ONM, and employ full-wave simulations to demonstrate its optical functionalities.

View Article and Find Full Text PDF

Modeling meta-surfaces as thin metamaterial layers with continuously varying bulk parameters, we employed a rigorous mode-expansion theory to study the scattering properties of such systems. We found that a meta-surface with a linear reflection-phase profile could redirect an impinging light to a non-specular channel with nearly 100% efficiency, and a meta-surface with a parabolic reflection-phase profile could focus incident plane wave to a point image. Under certain approximations, our theory reduces to the local response model (LRM) established for such problems previously, but our full theory has overcome the energy non-conservation problems suffered by the LRM.

View Article and Find Full Text PDF

We show that putting an ultra-thin anisotropic metamaterial layer on a plasmonic surface significantly enriches the surface wave (SW) characteristics of the system, which now supports SWs with transverse-magnetic (TM) and transverse-electric (TE) polarizations simultaneously. In addition, the generated SWs exhibit hybridized polarization characteristics in certain cases, and a SW band gap opens within a particular propagation direction range. We designed and fabricated a realistic structure based on the proposed model, and combined microwave experiments with full-wave simulations to verify the fascinating theoretical predictions.

View Article and Find Full Text PDF

Here we combined experiments and theory to study the optical properties of a plasmonic cavity consisting of a perforated metal film and a flat metal sheet separated by a semiconductor spacer. Three different types of optical modes are clearly identified-the propagating and localized surface plasmons on the perforated metal film and the Fabry-Perot modes inside the cavity. Interactions among them lead to a series of hybridized eigenmodes exhibiting excellent spectral tunability and spatially distinct field distributions, making the system particularly suitable for multicolor infrared light detections.

View Article and Find Full Text PDF

We show that a flat metasurface with a parabolic reflection-phase distribution can focus an impinging plane wave to a point image in reflection geometry. Our system is much thinner than conventional geometric-optics devices and does not suffer the energy-loss issues encountered by many metamaterial devices working in transmission geometry. We designed realistic microwave samples and performed near-field scanning experiments to verify the focusing effect.

View Article and Find Full Text PDF

We combine theory and experiment to demonstrate that a carefully designed gradient meta-surface supports high-efficiency anomalous reflections for near-infrared light following the generalized Snell's law, and the reflected wave becomes a bounded surface wave as the incident angle exceeds a critical value. Compared to previously fabricated gradient meta-surfaces in infrared regime, our samples work in a shorter wavelength regime with a broad bandwidth (750-900 nm), exhibit a much higher conversion efficiency (∼80%) to the anomalous reflection mode at normal incidence, and keep light polarization unchanged after the anomalous reflection. Finite-difference-time-domain (FDTD) simulations are in excellent agreement with experiments.

View Article and Find Full Text PDF

The arbitrary control of electromagnetic waves is a key aim of photonic research. Although, for example, the control of freely propagating waves (PWs) and surface waves (SWs) has separately become possible using transformation optics and metamaterials, a bridge linking both propagation types has not yet been found. Such a device has particular relevance given the many schemes of controlling electromagnetic waves at surfaces and interfaces, leading to trapped rainbows, lensing, beam bending, deflection, and even anomalous reflection/refraction.

View Article and Find Full Text PDF

With quasi-periodic microstructures, great enhancement of infrared light absorption of Au film over a broad wavelength band (2.7~15.1 μm) was realized experimentally for the first time.

View Article and Find Full Text PDF

We show that a metallic plate with periodic fractal-shaped slits can be homogenized as a plasmonic metamaterial with plasmon frequency dictated by the fractal geometry. Owing to the all-dimensional subwavelength nature of the fractal pattern, our system supports both transverse-electric and transverse-magnetic surface plasmons. As a result, this structure can be employed to focus light sources with all-dimensional subwavelength resolution and enhanced field strengths.

View Article and Find Full Text PDF