Cellular redox homeostasis is essential for maintaining cellular activities, such as DNA synthesis and gene expression. Inspired by this, new therapeutic interventions have been rapidly developed to modulate the intracellular redox state using artificial transmembrane electron transport. However, current approaches that rely on external electric field polarization can disrupt cellular functions, limiting their application.
View Article and Find Full Text PDFUnveiling molecular mechanisms that dominate protein phase dynamics has been a pressing need for deciphering the intricate intracellular modulation machinery. While ions and biomacromolecules have been widely recognized for modulating protein phase separations, effects of small molecules that essentially constitute the cytosolic chemical atmosphere on the protein phase behaviors are rarely understood. Herein, we report that vitamin C (V), a key small molecule for maintaining a reductive intracellular atmosphere, drives reentrant phase transitions of myosin II/F-actin (actomyosin) cytoskeletons.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2023
Nanoplastics are recently recognized as neurotoxic factors for the nervous systems. However, whether and how they affect vesicle chemistry (i.e.
View Article and Find Full Text PDFHigh-density polyethylene (HDPE) and isotactic polypropylene (iPP) are widely used in industrial and residential applications due to their low cost and chemical stability, thus their recycling process can contribute to a circular economy. However, both polymers are non-polar materials, and the incompatibility with most other materials leads to substantially inferior properties of blends. In this work, we propose a flexible compatibilization strategy to improve the compatibility of HDPE/iPP blends.
View Article and Find Full Text PDFNeuropeptide nociceptin/orphanin FQ is the endogenous ligand for the opioid-receptor-like receptor 1 (ORL1), mediating essential functions in the central and peripheral nervous systems. The present study was performed to investigate the role of nociceptin and ORL1 receptor in nociception and morphine-induced antinociception in the arcuate nucleus of hypothalamus in rats. Hindpaw withdrawal latencies (HWL) were measured by hot-plate and Randall Selitto tests.
View Article and Find Full Text PDF