Zinc metal batteries have been considered as an appealing candidate for grid-scale energy storage devices, but are hindered by the instable interface. Herein, we design a sol-to-gel gradient electrolyte through the simultaneous electrochemical deposition of Zn and alginate. The electrochemical gelation of alginate creates a gradient sol-to-gel interface and enables the high ionic conductivity, where vehicular mechanism dominated transport is maintained in the bulk electrolyte, while a lean-water hydrogel like state is created at the Zn/electrolyte interface to reduce water activity.
View Article and Find Full Text PDFAqueous zinc-ion batteries (AZIBs) have gained significant attentions for their inherent safety and cost-effectiveness. However, challenges, such as dendrite growth and anodic corrosion at the Zn anode, hinder their commercial viability. In this paper, an organic-inorganic coating layer (Nafion-TiO) was introduced to protect the Zn anode and electrolyte interface.
View Article and Find Full Text PDF