J Zhejiang Univ Sci B
February 2024
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.
View Article and Find Full Text PDFTemperature has a profound influence on various neuromodulation processes and has emerged as a focal point. However, the effects of acute environmental temperature fluctuations on cultured cortical networks have been inadequately elucidated. To bridge this gap, we have developed a brain-on-a-chip platform integrating cortical networks and electrodeposited Pt/Ir modified microelectrode arrays (MEAs) with 3D-printed bear-shaped triple chambers, facilitating control of temperature transients.
View Article and Find Full Text PDFAlthough neuronal network models hold great potential for advancing neuroscience research, with the capacity to provide fundamental insights into mechanisms underlying neuronal functions, the dynamics of cell communication within such networks remain poorly understood. Here, we develop a customizable, polymer modified three-dimensional gold microelectrode array with sufficient stability for high signal-to-noise, long-term, neuronal recording of cultured networks. By using directed spatial and temporal patterns of electrical stimulation of cells to explore synaptic-based communication, we monitored cell network dynamics over 3 weeks, quantifying communication capability using correlation heatmaps and mutual information networks.
View Article and Find Full Text PDFAdv Sci (Weinh)
August 2024
Hippocampal CA1 neurons show intense firing at specific spatial locations, modulated by isolated landmarks. However, the impact of real-world scene transitions on neuronal activity remains unclear. Moreover, long-term neural recording during movement challenges device stability.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
February 2024
Deep brain stimulation (DBS), including optical stimulation and electrical stimulation, has been demonstrated considerable value in exploring pathological brain activity and developing treatments for neural disorders. Advances in DBS microsystems based on implantable microelectrode array (MEA) probes have opened up new opportunities for closed-loop DBS (CL-DBS) in situ. This technology can be used to detect damaged brain circuits and test the therapeutic potential for modulating the output of these circuits in a variety of diseases simultaneously.
View Article and Find Full Text PDFFront Bioeng Biotechnol
January 2024
17β-Estradiol (E2) is a critical sex steroid hormone, which has significant effects on the endocrine systems of both humans and animals. E2 is also believed to play neurotrophic and neuroprotective roles in the brain. Biosensors present a powerful tool to detect E2 because of their small, efficient, and flexible design.
View Article and Find Full Text PDFThe functioning of place cells requires the involvement of multiple neurotransmitters, with dopamine playing a critical role in hippocampal place cell activity. However, the exact mechanisms through which dopamine influences place cell activity remain largely unknown. Herein, we present the development of the integrated three-electrode dual-mode detection chip (ITDDC), which enables simultaneous recording of the place cell activity and dopamine concentration fluctuation.
View Article and Find Full Text PDFIn situ physiological signals of in vitro neural disease models are essential for studying pathogenesis and drug screening. Currently, an increasing number of in vitro neural disease models are established using human-induced pluripotent stem cell (hiPSC) derived neurons (hiPSC-DNs) to overcome interspecific gene expression differences. Microelectrode arrays (MEAs) can be readily interfaced with two-dimensional (2D), and more recently, three-dimensional (3D) neural stem cell-derived in vitro models of the human brain to monitor their physiological activity in real time.
View Article and Find Full Text PDFThe learning and memory functions of the brain remain unclear, which are in urgent need for the detection of both a single cell signal with high spatiotemporal resolution and network activities with high throughput. Here, an in vitro microelectrode array (MEA) was fabricated and further modified with polypyrrole/carboxylated single-walled carbon nanotubes (PPy/SWCNTs) nanocomposites as the interface between biological and electronic systems. The deposition of the nanocomposites significantly improved the performance of microelectrodes including low impedance (60.
View Article and Find Full Text PDF