The wettability of subsurface minerals is a critical factor influencing the pore-scale displacement of fluids in underground reservoirs. As such, it plays a key role in hydrocarbon production and greenhouse gas geo-sequestration. We present a comprehensive and critical review of the current state of knowledge on the intermolecular forces governing wettability of rock minerals most relevant to subsurface fluid storage and recovery.
View Article and Find Full Text PDFHypothesis: Oil recovery from carbonate reservoirs is often low, in a large part due to the oil-wet state of the constituent rocks. Cationic surfactants are among the most effective compounds capable of reversing the carbonate wettability to more water-wet, which significantly enhances oil recovery. Screening for the most effective cationic surfactants can be facilitated by studying the effects of specific molecular properties, such as the hydrophobic chain length, on the wettability reversal efficiency using molecular dynamics (MD) simulations.
View Article and Find Full Text PDFHypothesis: Surfactant flooding is the leading approach for reversing the wettability of oil-wet carbonate reservoirs, which is critical for the recovery of the remaining oil. Combination of molecular dynamics (MD) simulations with experiments on simplified model systems can uncover the molecular mechanisms of wettability reversal and identify key molecular properties for systematic design of new, effective chemical formulations for the enhanced oil recovery.
Experiments/simulations: Wettability reversal by a series of surfactant solutions was studied experimentally using contact angle measurements on aged calcite chips, and a novel MD simulation methodology with scaled-charges that provides superior description of the ionic interactions in aqueous solutions.
Due to the importance of the dolomite mineral in carbonate reservoirs, the wettability characteristics of dolomite surfaces were studied with both experiments and molecular dynamics simulations. Contact angle measurements confirm that the dolomite surface can be rendered oil-wet by carboxylates (acidic components of crude oil) and that the cationic surfactant can reverse the oil-wetness more effectively than the anionic surfactant used in this study. The oil-wetness of an aged dolomite chip was reduced when treated with MgSO solution at 80 °C, while CaCl, MgCl, and NaSO solutions did not produce any significant wettability alteration.
View Article and Find Full Text PDFWettability alteration of oil-wet calcite by surfactants was studied by means of molecular dynamics (MD) simulations. The simulations use the recently developed model for positively charged calcite surface, whose oil-wet state originates from binding of negatively charged carboxylate molecules contained in the oil, consistently with the bulk of the available experimental data. The ability to alter the surface wettability, which can be directly quantified by the release of the surface-bound carboxylates, is tested for nine different surfactants of all charge types-cationic, anionic, nonionic, and zwitterionic-and compared to that of brine.
View Article and Find Full Text PDFJ Colloid Interface Sci
June 2020
A new model for a positively charged calcite surface was developed to allow realistic molecular dynamics studies of wettability alteration on carbonate rocks. The surface charge was introduced in a manner consistent with the underlying calcite geochemistry and with the conclusions of recent quantum mechanical studies. The simulations using the new surface model demonstrate that the experimentally observed wettability behavior of calcite is represented correctly.
View Article and Find Full Text PDF