Am J Physiol Renal Physiol
November 2024
Renal denervation (RDN) has been used for treating resistant hypertension. A few recent studies have shown vagal innervation of kidneys causing confusion. This study aimed to provide anatomical and functional evidence for renal autonomic innervation.
View Article and Find Full Text PDFThe morphology of the active layer is crucial for highly efficient organic solar cells (OSCs), which can be regulated by selecting a rational third component. In this work, the highly crystalline nonfullerene acceptor BTP-eC9 is selected as the morphology regulator in OSCs with PM6:BTP-BO-4Cl as the main system. The addition of BTP-eC9 can prolong the nucleation and crystallization progress of acceptor and donor molecules, thereby enhancing the order of molecular arrangement.
View Article and Find Full Text PDFBackground: S-Nitrosylation (SNO), a prototypic redox-based posttranslational modification, is involved in cardiovascular disease. Aortic aneurysm and dissection are high-risk cardiovascular diseases without an effective cure. The aim of this study was to determine the role of SNO of Septin2 in macrophages in aortic aneurysm and dissection.
View Article and Find Full Text PDFThe ternary strategy is one of the effective methods to regulate the morphology of the active layer in organic solar cells (OSCs). In this work, the ternary OSCs with bulk heterojunction (BHJ) or layer-by-layer (LbL) active layers are prepared by using the polymer donor PM6 and the non-fullerene acceptor L8-BO as the main system and the fullerene acceptor PCBM as the third component. The power conversion efficiencies (PCEs) of BHJ OSCs and LbL OSCs are increased from 17.
View Article and Find Full Text PDFBackground: The cardiac-protective role of GSNOR (S-nitrosoglutathione reductase) in the cytoplasm, as a denitrosylase enzyme of S-nitrosylation, has been reported in cardiac remodeling, but whether GSNOR is localized in other organelles and exerts novel effects remains unknown. We aimed to elucidate the effects of mitochondrial GSNOR, a novel subcellular localization of GSNOR, on cardiac remodeling and heart failure (HF).
Methods: GSNOR subcellular localization was observed by cellular fractionation assay, immunofluorescent staining, and colloidal gold particle staining.
Background: Aortic aneurysm and aortic dissection (AAD) are life-threatening vascular diseases, with endothelium being the primary target for AAD treatment. Protein S-sulfhydration is a newly discovered posttranslational modification whose role in AAD has not yet been defined. This study aims to investigate whether protein S-sulfhydration in the endothelium regulates AAD and its underlying mechanism.
View Article and Find Full Text PDFAtherosclerosis-associated cardiovascular disease is one of the main causes of death and disability among patients with diabetes mellitus. However, little is known about the impact of S-nitrosylation in diabetes-accelerated atherosclerosis. Here, we show increased levels of S-nitrosylation of guanine nucleotide-binding protein G(i) subunit alpha-2 (SNO-GNAI2) at Cysteine 66 in coronary artery samples from diabetic patients with atherosclerosis, consistently with results from mice.
View Article and Find Full Text PDFBackground: Cardiac hypertrophy is an important prepathology of, and will ultimately lead to, heart failure. However, the mechanisms underlying pathological cardiac hypertrophy remain largely unknown. This study aims to elucidate the effects and mechanisms of HINT1 (histidine triad nucleotide-binding protein 1) in cardiac hypertrophy and heart failure.
View Article and Find Full Text PDFCardiac fibrosis (CF) is an irreversible pathological process that occurs in almost all kinds of cardiovascular diseases. Phosphorylation-dependent activation of c-Jun N-terminal kinase (JNK) induces cardiac fibrosis. However, whether S-nitrosylation of JNK mediates cardiac fibrosis remains an open question.
View Article and Find Full Text PDFCellular senescence is closely associated with age-related diseases. Ovarian aging, a special type of organ senescence, is the pathophysiological foundation of the diseases of the reproductive system. It is characterized by the loss of integrity of the surface epithelium and a gradual decrease in the number of human ovarian surface epithelial cells (HOSEpiCs).
View Article and Find Full Text PDFAging is closely associated with atherosclerosis. Macrophages accumulate in atherosclerotic lesions contributing to the development and progression of atherosclerosis. Although atherosclerotic lesions are known to contain senescent cells, the mechanism underlying the formation of senescent macrophages during atherosclerosis is still unclear.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe aim of this study was to reveal the specific molecular mechanisms by which DENND1A accepts EGF signaling and activates Rab35 in gastric cancer. The expression of proteins related to DENND1A was examined by western blot analysis. Activation of Rab35 was assessed by GST-pulldown.
View Article and Find Full Text PDFBackground: Runt-related transcription factor 1 (RUNX1), an essential regulator of hematopoiesis, is overexpressed in patients with nonsmall-cell lung cancer (NSCLC) and is correlated with enhanced metastatic ability. Ras-interacting protein 1 (), a potential oncogene, is required for blood vessel formation, and recently, it has been shown that Rasip1 is widely expressed in NSCLC patients. We noticed that promoter contains several potential RUNX1-binding sequences.
View Article and Find Full Text PDFNVP-BEZ235 (BEZ235), an available dual PI3K/mTOR inhibitor, showed antitumor effect and provided a therapy strategy in carcinomas. However, the acquired upregulation of multiple receptor tyrosine kinases (RTKs) by NVP-BEZ235 in tumors limits its clinical efficacy. HDAC6, a class II histone deacetylase, is associated with expressions of multiple RTKs.
View Article and Find Full Text PDFMolecule interacting with CasL 1 (MICAL1) is a multidomain flavoprotein mono-oxygenase that strongly involves in cytoskeleton dynamics and cell oxidoreduction metabolism. Recently, results from our laboratory have shown that MICAL1 modulates reactive oxygen species (ROS) production, and the latter then activates phosphatidyl inositol 3-kinase (PI3K)/protein kinase B (Akt) signalling pathway which regulates breast cancer cell invasion. Herein, we performed this study to assess the involvement of MICAL1 in breast cancer cell proliferation and to explore the potential molecular mechanism.
View Article and Find Full Text PDFFront Pharmacol
September 2017
This study aims to investigate the mechanism involved in intracellular regulation of EGFR degradation induced by EGF. Phosphorylation of proteins related to EGFR signaling was examined by western blot analysis. Activation, connection between Rab35 and folliculin (FLCN) were assessed by pulldown, coimmunoprecipitation assays separately.
View Article and Find Full Text PDFBackground: Molecules Interacting with CasL (MICAL1), a multidomain flavoprotein monoxygenase, is strongly involved in the mechanisms that promote cancer cell proliferation and survival. Activation of MICAL1 causes an up-regulation of reactive oxygen species (ROS) in HeLa cells. ROS can function as a signaling molecule that modulates protein phosphorylation, leading to malignant phenotypes of cancer cells such as invasion and metastasis.
View Article and Find Full Text PDFNon-small cell lung cancer (NSCLC) remains one of the most metastasizing tumors, and directional cell migration is critical for targeting tumor metastasis. GIT2 has been known to bind to Paxillin to control cell polarization and directional migration. However, the molecular mechanisms underlying roles of GIT2 in controlling cell polarization and directional migration remain elusive.
View Article and Find Full Text PDF