The purpose of this study is to reduce the glass substrate reflectivity over a wide spectral range (400-1200 nm) without having high reflectivity in the near-infrared region. After making porous SiO₂/MgF₂ double-layer antireflection (DLAR) thin film structure, the superstrate-type silicon-based tandem cells are added. In comparison to having only silicon-based tandem solar cells, the short-circuit current density has improved by 6.
View Article and Find Full Text PDFPurpose: The beam monitoring equipments developed for the first PSI spot scanning proton therapy facility, Gantry 1, have been successfully used for more than 10 years. The purpose of this article is to summarize the author's experience in the beam monitoring technique for dynamic proton scanning.
Methods: The spot dose delivery and verification use two independent beam monitoring and computer systems.
Since the end of 1996, we have treated more than 160 patients at PSI using spot-scanned protons. The range of indications treated has been quite wide and includes, in the head region, base-of-skull sarcomas, low-grade gliomas, meningiomas, and para-nasal sinus tumors. In addition, we have treated bone sarcomas in the neck and trunk--mainly in the sacral area--as well as prostate cases and some soft tissue sarcomas.
View Article and Find Full Text PDFThe availability at the Paul Scherrer Institute (PSI) of a spot-scanning technique with an isocentric beam delivery system (gantry) allows the realization of intensity-modulated proton therapy (IMPT). The development of 3D dosimetry is an important tool for the verification of IMPT therapy plans based on inhomogeneous 3D conformal dose distributions. For that purpose new dosimeters are being developed.
View Article and Find Full Text PDFPSI is still the only location in which proton therapy is applied using a dynamic beam scanning technique on a very compact gantry. Recently, this system is also being used for the application of intensity-modulated proton therapy (IMPT). This novel technical development and the success of the proton therapy project altogether have led PSI in Year 2000 to further expand the activities in this field by launching the project PROSCAN.
View Article and Find Full Text PDF