The quest for artificial light sources mimicking sunlight has been a long-standing endeavor, particularly for applications in anticounterfeiting, agriculture, and color hue detection. Conventional sunlight simulators are often cost-prohibitive and bulky. Therefore, the development of a series of single-phase phosphors CaLiMgAl(PO):0.
View Article and Find Full Text PDFConventional ocean wave observation instruments are powered by batteries, limiting the continuous observation time. Besides, the waste of batteries brings environmental contaminations. Triboelectric nanogenerators (TENGs) can reveal ocean wave information through their electrical output, taking the triboelectric charge as the information carrier.
View Article and Find Full Text PDFCurrent ocean wave observation is achieved by separate battery-powered sensing and signal transmission modules. Owing to the limited electrical supply and information channel space, the long-time span observation is restricted and only wave height and period information rather than the whole wave profile are sent back to the receiver. In this work, a self-powered ocean wave observation system was achieved by a developed polymer network liquid crystal (PNLC)-based smart reflector powered by a tailored triboelectric nanogenerator embedded with one-way overrunning clutches.
View Article and Find Full Text PDF