Printed circuit board (PCB) may display diverse surface defects in manufacturing. These defects not only influence aesthetics but can also affect the performance of the PCB and potentially damage the entire board. Thus, achieving efficient and highly accurate detection of PCB surface defects is fundamental for quality control in fabrication.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
March 2023
In this work, LaCoO and LaMnO perovskites with the higher specific surface area were synthesized using MOFs as precursor, then, the composite catalysts CeO-LaCoFeO and CeO-LaMnFeO were prepared by using CeO as support and Fe element doping LaCoO and LaMnO, respectively. The as-prepared samples were characterized by XRD, SEM, XPS, H-TPR, and N physisorption techniques. Subsequently, toluene was used as the probe molecule for volatile organic compounds (VOCs) to test the catalytic activity of these as-prepared catalysts.
View Article and Find Full Text PDFAntioxidants are healthy substances that are beneficial to the human body and exist mainly in natural and synthetic forms. Among many kinds of antioxidants, the natural antioxidants have great applications in many fields such as food chemistry, medical care, and clinical application. In recent years, many efforts have been made for the determination of natural antioxidants.
View Article and Find Full Text PDFThe total content and chemical speciation of Cd, Cr, Cu, Ni, Pb, and Zn in seven short cores sampled from the Yitong River from Changchun City were analyzed to assess the pollution levels and potential ecological risks of heavy metals in the sediments. The results demonstrated that the total contents of Cd, Cr, Cu, Ni, Pb, and Zn in sediments were 0.10-1.
View Article and Find Full Text PDFObjective: Fluorescence molecular tomography (FMT) is an important tool for life science, which can noninvasive real-time three-dimensional (3-D) visualization for fluorescence source location. FMT is widely used in tumor research due to its high-sensitive and low cost. However, the reconstruction of FMT is difficult.
View Article and Find Full Text PDFThe use of biochar as an adsorbent for environmental remediation has been attracting increasing interest. However, biochar can contain contaminants such as polycyclic aromatic hydrocarbons (PAHs) and metals (e.g.
View Article and Find Full Text PDFObjective: The aim of this paper is to improve the reconstruction accuracy in both position and source region of fluorescence molecular tomography (FMT).
Methods: The reconstruction of the FMT is challenging due to its serious ill-posedness and ill-condition. Currently, to obtain the fluorescent sources accurately, more a priori information of the fluorescent sources is utilized and more efficient and practical methods are proposed.
Fluorescence molecular tomography (FMT) has been widely used in preclinical tumor imaging, which enables three-dimensional imaging of the distribution of fluorescent probes in small animal bodies via image reconstruction method. However, the reconstruction results are usually unsatisfactory in the term of robustness and efficiency because of the ill-posed and ill-conditioned of FMT problem. In this study, an FMT reconstruction method based on primal accelerated proximal gradient (PAPG) descent and L1-norm regularized projection (L1RP) is proposed.
View Article and Find Full Text PDFThe correct affiliation for Yuan Gao, Kun Wang, and Jie Tian is as follows.
View Article and Find Full Text PDFBioluminescence tomography (BLT) is a powerful non-invasive molecular imaging tool for in vivo studies of glioma in mice. However, because of the light scattering and resulted ill-posed problems, it is challenging to develop a sufficient reconstruction method, which can accurately locate the tumor and define the tumor morphology in three-dimension. In this paper, we proposed a novel Gaussian weighted Laplace prior (GWLP) regularization method.
View Article and Find Full Text PDFPurpose: Fluorescence molecular tomography (FMT) is a novel imaging modality for three-dimensional preclinical research and has many potential applications for drug therapy evaluation and tumor diagnosis. However, FMT presents an ill-conditioned and ill-posed inverse problem, which is a challenge for its tomography reconstruction. Due to the importance of FMT reconstruction, it is valuable and necessary to develop further practical reconstruction methods for FMT.
View Article and Find Full Text PDFA novel method is presented for rapid measurement of optical rotatory dispersion (ORD). Light passes through a polarizer, sample and analyzer, to a transmission grating that disperses the collimated light beam. A step-motor rotating stage controlled by a digital signal processor changes the analyzer orientation.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
August 2016
Segmentectomy using indocyanine green (ICG) has become a primary treatment option to achieve a complete resection and preserve lung function in early-stage lung cancer. However, owing to a lack of appropriate intraoperative imaging systems, it is a huge challenge for surgeons to identify the intersegmental plane during the operation, leading to poor prognosis. Thus, we developed a novel wireless wearable fluorescence image-guided surgery system (LIGHTEN) for fast and accurate identification of intersegmental planes in human patients.
View Article and Find Full Text PDFPeritoneal carcinomatosis from gastric cancer represents a common recurrent gastric cancer that seriously affects the survival, prognosis, and quality of life of patients at its advanced stage. In recent years, complete cytoreduction surgery in combination with hyperthermic intraperitoneal chemotherapy has been demonstrated to improve the survival and prognosis of patients with malignant tumors including peritoneal carcinomatosis from gastric cancer. Establishing viable methods of accurately assessing the tumor burden in patients with peritoneal carcinoma and correctly selecting suitable patients in order to improve cytoreduction surgical outcomes and reduce the risk of postoperative complications has become a challenge in the field of peritoneal carcinoma research.
View Article and Find Full Text PDFRev Sci Instrum
September 2016
An optical rotation measurement system based on digital signal processor, modulated laser, and step motor rotating stage is established. Centroid algorithm featured fast and simple calculation is introduced to process light signals with or without sample to obtain the optical rotating angle through the step difference between two centroids. The system performance is proved experimentally with standard quartz tubes and glucose solutions.
View Article and Find Full Text PDFFluorescence Molecular Tomography (FMT) is a powerful imaging modality for the research of cancer diagnosis, disease treatment and drug discovery. Via three-dimensional (3-D) imaging reconstruction, it can quantitatively and noninvasively obtain the distribution of fluorescent probes in biological tissues. Currently, photon propagation of FMT is conventionally described by the Finite Element Method (FEM), and it can obtain acceptable image quality.
View Article and Find Full Text PDFFluorescence molecular tomography (FMT) is a promising tomographic method in preclinical research, which enables noninvasive real-time three-dimensional (3-D) visualization for in vivo studies. The ill-posedness of the FMT reconstruction problem is one of the many challenges in the studies of FMT. In this paper, we propose a l 2,1-norm optimization method using a priori information, mainly the structured sparsity of the fluorescent regions for FMT reconstruction.
View Article and Find Full Text PDFFluorescence molecular tomography (FMT) is a promising tool in the study of cancer, drug discovery, and disease diagnosis, enabling noninvasive and quantitative imaging of the biodistribution of fluorophores in deep tissues via image reconstruction techniques. Conventional reconstruction methods based on the finite-element method (FEM) have achieved acceptable stability and efficiency. However, some inherent shortcomings in FEM meshes, such as time consumption in mesh generation and a large discretization error, limit further biomedical application.
View Article and Find Full Text PDF