As an important part of perovskite solar cells (PSCs), hole transporting layer (HTL) has a critical impact on the performance and stability of the devices. In an attempt to alleviate the moisture and thermal stability issues from the commonly used HTL Spiro-OMeTAD with dopant, it is urgent to develop novel HTLs with high stability. In this study, a new class of polymers D18 and D18-Cl are applied as undoped HTL for CsPbIBr-based PSCs.
View Article and Find Full Text PDFEfficient electron transport layer-free perovskite solar cells (ETL-free PSCs) with cost-effective and simplified design can greatly promote the large area flexible application of PSCs. However, the absence of ETL usually leads to the mismatched indium tin oxide (ITO)/perovskite interface energy levels, which limits charge transfer and collection, and results in severe energy loss and poor device performance. To address this, a polar nonconjugated small-molecule modifier is introduced to lower the work function of ITO and optimize interface energy level alignment by virtue of an inherent dipole, as verified by photoemission spectroscopy and Kelvin probe force microscopy measurements.
View Article and Find Full Text PDF