Spinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids.
View Article and Find Full Text PDFThe intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of models for spinal cord-related diseases highly challenging. Currently, both and models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable models for spinal cord-related diseases.
View Article and Find Full Text PDFWe previously constructed a three-dimensional gelatin sponge (3D-GS) scaffold as a delivery vehicle for therapeutic cells and trophic factors in the treatment of spinal cord injury (SCI), and this study aimed to assess the biosafety and efficacy of the scaffold in a non-human primate SCI model. However, because it has only been tested in rodent and canine models, the biosafety and efficacy of the scaffold should ideally be assessed in a non-human primate SCI model before its use in the clinic. No adverse reactions were observed over 8 weeks following 3D-GS scaffold implantation into in a Macaca fascicularis with hemisected SCI.
View Article and Find Full Text PDFThe microorganism has become a promising therapeutic tool for many diseases because it is a kind of cell factory that can efficiently synthesize a variety of bioactive substances. However, the metabolic destiny of microorganisms is difficult to predict . Here, a timing bionic dormant body with programmable destiny is reported, which can predict the metabolic time and location of microorganisms and can prevent it from being damaged by the complex biological environment .
View Article and Find Full Text PDFSpinal cord injury (SCI) often results in an inhibitory environment at the injury site. In our previous studies, transplantation of a scaffold combined with stem cells was proven to induce neural regeneration in animal models of complete SCI. Based on these preclinical studies, collagen scaffolds loaded with the patients' own bone marrow mononuclear cells or human umbilical cord mesenchymal stem cells were transplanted into SCI patients.
View Article and Find Full Text PDFSubsequently to the publication of the above paper, an interested reader drew to the authors' attention that several pairings of panels in Fig. 5, as shown on p. 5599, were strikingly similar.
View Article and Find Full Text PDFTraumatic brain injury (TBI) can be exacerbated and prolonged for months or even years by chronic inflammatory processes with long-term consequences on neurodegeneration and neurological impairment. However, there are no clear pharmacological therapies of benefit to manage neurological dysfunctions, which, relating to the molecular mechanisms underlying the behavioral deficits after TBI, have yet to be fully identified. Recently, a glucagon-like peptide 1 (GLP-1) agonist, Exendin-4, was approved not only for the treatment of type 2 diabetes mellitus, but it also played a neurotrophic role in various CNS neurological diseases.
View Article and Find Full Text PDFObjective: To observe the effect of bloodletting acupuncture at twelve -well points of hand on microcirculatory disturbance in mice with traumatic brain injury (TBI), and to explore the protective effect of bloodletting therapy on TBI.
Methods: Sixty clean adult male C57BL/6J mice were randomly divided into a sham-operation group, a model group and a treatment group, 20 mice in each group. The TBI model was established by using electronic controlled cerebral cortex impact instrument in the model group and the treatment group.
Objective: Casein kinase 2 interacting protein-1 (CKIP-1) has exhibited multiple functions in regulating cell proliferation, apoptosis, differentiation, and cytoskeleton. CKIP-1 also plays an important role as a critical regulator in tumorigenesis. The aim of this study is to further examine the function of CKIP-1 in glioma cells.
View Article and Find Full Text PDFAn accurate and effective neurological evaluation is indispensable in the treatment and rehabilitation of traumatic brain injury. However, most of the existing evaluation methods in basic research and clinical practice are not objective or intuitive for assessing the neurological function of big animals, and are also difficult to use to qualify the extent of damage and recovery. In the present study, we established a big animal model of traumatic brain injury by impacting the cortical motor region of beagles.
View Article and Find Full Text PDFBackground: Traumatic spinal cord injury (SCI) causes neuronal death, demyelination, axonal degeneration, inflammation, glial scar formation, and cystic cavitation resulting in interruption of neural signaling and loss of nerve function. Multifactorial targeted therapy is a promising strategy for SCI.
Methods: The anti-inflammatory peptide KAFAKLAARLYRKALARQLGVAA (KAFAK) and brain-derived neurotrophic factor (BDNF)-modified hyaluronan-methylcellulose (HAMC) hydrogel was designed for minimally invasive, localized, and sustained intrathecal protein delivery.
Background: Animal models are essential in simulating clinical diseases and facilitating relevant studies.
New Method: We established a precise canine model of traumatic brain injury (TBI) based on cerebral motor cortex injury which was confirmed by neuroimaging, electrophysiology, and a series of motor function assessment methods. Twelve beagles were divided into control, sham, and model groups.
Stem cells and biomaterials transplantation hold a promising treatment for functional recovery in spinal cord injury (SCI) animal models. However, the functional recovery of complete SCI patients was still a huge challenge in clinic. Additionally, there is no clinical standard procedure available to diagnose precisely an acute patient as complete SCI.
View Article and Find Full Text PDFGlioma is one of the most malignant forms of brain tumor, and has been of persistent concern due to its high recurrence and mortality rates, and limited therapeutic options. As a cardiac glycoside, ouabain has widespread applications in congestive heart diseases due to its positive cardiac inotropic effect by inhibiting Na+/K+‑ATPase. Previous studies have demonstrated that ouabain has antitumor activity in several types of human tumor, including glioma.
View Article and Find Full Text PDFThis study aimed to investigate the effects of targeted temperature management (TTM) modulation on traumatic brain injury (TBI) and the involved mechanisms using quantitative proteomics technology. SH-SY5Y and HT-22 cells were subjected to moderate stretch injury using the cell injury controller (CIC), followed by incubation at TTM (mild hypothermia, 32°C), or normothermia (37°C). The real-time morphological changes, cell cycle phase distribution, death, and cell viability were evaluated.
View Article and Find Full Text PDFLong-term exposure to fine particulate matter (PM2.5) may cause adverse pregnancy outcomes but the mechanisms are not clear. Our research confirms that PM2.
View Article and Find Full Text PDFNecroptosis, a novel type of programmed cell death, is involved in stroke-induced ischemic brain injury. Although studies have sought to explore the mechanisms of necroptosis, its signaling pathway has not yet to be completely elucidated. Thus, we used oxygen-glucose deprivation (OGD) and middle cerebral artery occlusion (MCAO) models mimicking ischemic stroke (IS) conditions to investigate mechanisms of necroptosis.
View Article and Find Full Text PDFStudies have shown that endogenous neural stem cells (NSCs) activated by spinal cord injury (SCI) primarily generate astrocytes to form glial scar. The NSCs do not differentiate into neurons because of the adverse microenvironment. In this study, we defined the activation timeline of endogenous NSCs in rats with severe SCI.
View Article and Find Full Text PDFRegeneration of damaged neurons and recovery of sensation and motor function after complete spinal cord injury (SCI) are challenging. We previously developed a collagen scaffold, NeuroRegen, to promote axonal growth along collagen fibers and inhibit glial scar formation after SCI. When functionalized with multiple biomolecules, this scaffold promoted neurological regeneration and functional recovery in animals with SCI.
View Article and Find Full Text PDFAim: To investigate the protective effect of hypothermia (HT) on brain injury in moderate traumatic brain injury (TBI) rat models and the potential mechanisms, especially the involvement of RIPK1 in apoptosis and necroptosis.
Methods: Adult Sprague-Dawley rats were randomized to four groups: sham+normothermia (sham+NT), sham+hypothermia (sham+HT), moderate TBI+normothermia (TBI+NT) and moderate TBI+hypothermia (TBI+HT). The sham+HT and TBI+HT groups were submitted to 32°C for 6 hours.
Bloodletting at Jing points has been used to treat coma in traditional Chinese medicine. Mild induced hypothermia has also been shown to have neuroprotective effects. However, the therapeutic effects of bloodletting at Jing points and mild induced hypothermia alone are limited.
View Article and Find Full Text PDFThe objective of this clinical study was to assess the safety and feasibility of the collagen scaffold, NeuroRegen scaffold, one year after scar tissue resection and implantation. Scar tissue is a physical and chemical barrier that prevents neural regeneration. However, identification of scar tissue is still a major challenge.
View Article and Find Full Text PDFMany studies have shown the Na(+)/K(+)-ATPase (NKA) might be a potential target for anticancer therapy. Cardiac glycosides (CGs), as a family of naturally compounds, inhibited the NKA activity. The present study investigates the antitumor effect of ouabain and elucidates the pharmacological mechanisms of CG activity in liver cancer HepG2 cell using SILAC coupled to LC-MS/MS method.
View Article and Find Full Text PDF