A novel three-dimensional nickel hydroxide/polyurethane (Ni(OH)/PU) electrode was prepared by a simple and environmentally friendly method and used for non-enzymatic detection of glucose. The Ni(OH)/PU electrode was obtained by one-pot hydrothermal method of loading nickel hydroxide on a cheap, easily available and flexible polyurethane sponge, which is facile and energy-saving. The porous structure of the polyurethane sponge provides a large surface area and a rich electrochemical active site for the electrode, which is beneficial to the oxidation reaction of glucose on the surface of the electrode with Ni(OH).
View Article and Find Full Text PDFThe electrocatalytic applications of traditional polyimide film and carbon nanomaterials are hindered due to a shortage of three-dimensional hierarchical conductivity and porous structure. Herein, a novel polyimide-based electrode based on a highly efficient palladium nanocatalyst embellished three-dimensional reduced graphene oxide/polyimide foam (Pd/3D RGO@PI foam, signed PRP) toward HO electroreduction was designed and prepared through thermal foaming procedure, followed by facile dip-drying method and electrodeposition. As expected, such a binder-free, 3D hierarchical structure PRP electrode presented high catalytic property, good stability, as well as low activation energy toward HO electroreduction during the electrochemical measurement period.
View Article and Find Full Text PDFSensors (Basel)
September 2018
A hybrid structure gas sensor of reduced graphene oxide (RGO) decorated graphene (RGO-Gr) is designed for ultra-low concentration ammonia detection. The resistance value of the RGO-Gr hybrid is the indicator of the ammonia concentration and controlled by effective charge transport from RGO to graphene after ammonia molecule adsorption. In this hybrid material, RGO is the adsorbing layer to catch ammonia molecules and graphene is the conductive layer to effectively enhance charge/electron transport.
View Article and Find Full Text PDFA biosensor array with differential output based on a monocrystal graphene domain is proposed to realize high resolution measurements. The differential output structure can eliminate the noise that comes from graphene crystal orientation and grain boundary, as well as the fluctuation that comes from the contact resistance and experiment process, so as to improve resolution in the lower concentration. We have fabricated a high quality monocrystal graphene domain that has millimeter size by the chemical vapor deposition method.
View Article and Find Full Text PDF