Background: Intracellular cyclic adenosine monophosphate (cAMP) in inflammatory cells and airway smooth muscle is critical to the modulation of inflammatory response generation. Phosphodiesterase 4 (PDE4), an enzyme that catalyzes cAMP degradation, is therefore being actively explored as a molecular target for the treatment of airway inflammation, particularly asthma and chronic obstructive pulmonary disease. The field has undergone major advances in optimizing generation of compounds with a safe therapeutic margin; however, most PDE4 inhibitors tested so far have unacceptable side effects, particularly nausea and vomiting.
View Article and Find Full Text PDFPhosphodiesterases (PDEs) constitute a superfamily of enzymes that plays an important role in signal transduction by catalysing the hydrolysis of cAMP and cGMP. cDNA encoding PDE7A1 subtype was cloned and a stable recombinant HEK 293 cell line expressing high levels of PDE7A1 was generated. Transient transfection of pCRE-Luc plasmid, harboring luciferase reporter gene into the stable recombinant cell line and subsequent treatment with PDE7 inhibitor, resulted in a dose-dependent increase in luciferase activity.
View Article and Find Full Text PDF