Common single-nucleotide variants (SNVs) of eukaryotic translation initiation factor 2 alpha kinase 3 (EIF2AK3) slightly increase the risk of disorders in the periphery and the central nervous system. EIF2AK3 encodes protein kinase RNA-like endoplasmic reticulum kinase (PERK), a key regulator of ER stress. Three exonic EIF2AK3 SNVs form the PERK-B haplotype, which is present in 28% of the global population.
View Article and Find Full Text PDFBackground: Alzheimer's disease (AD) is characterized by cognitive dysfunction and amyloid plaques composed of the amyloid-beta peptide (Aβ). APOE is the greatest genetic risk for AD with APOE4 increasing risk up to ~ 15-fold compared to APOE3. Evidence suggests that levels and lipidation of the apoE protein could regulate AD progression.
View Article and Find Full Text PDFNeurologic deficits associated with human immunodeficiency virus (HIV) infection impact about 50% of persons with HIV (PWH). These disorders, termed HIV-associated neurocognitive disorders (HAND), possess neuropathologic similarities to Alzheimer's disease (AD), including intra- and extracellular amyloid-beta (Aβ) peptide aggregates. Aβ peptide is produced through cleavage of the amyloid precursor protein (APP) by the beta secretase BACE1.
View Article and Find Full Text PDFPeople living with HIV (PLWH) in the antiretroviral therapy (ART) era may lose more life-years to tobacco use than to HIV. Yet, smoking rates are more than twice as high among PLWH than the general population, contributing not just to mortality but to other adverse health outcomes, including neurocognitive deficits (neuroHIV). There is growing evidence that synergy with chronic inflammation and immune dysregulation that persists despite ART may be one mechanism by which tobacco smoking contributes to neuroHIV.
View Article and Find Full Text PDFCytosolic phospholipase A (cPLA) mediates oligomeric amyloid-β peptide (oAβ)-induced oxidative and inflammatory responses in glial cells. Increased activity of cPLA has been implicated in the neuropathology of Alzheimer's disease (AD), suggesting that cPLA regulation of oAβ-induced microglial activation may play a role in the AD pathology. We demonstrate that LPS, IFNγ, and oAβ increased phosphorylated cPLA (p-cPLA) in immortalized mouse microglia (BV2).
View Article and Find Full Text PDFHIV-associated neurocognitive disorders (HANDs) share common symptoms with Alzheimer's disease (AD), which is characterized by amyloid-β (Aβ) plaques. Plaques are formed by aggregation of Aβ oligomers, which may be the toxic species in AD pathogenesis, and oligomers are generated by cleavage of amyloid precursor protein (APP) by β-site amyloid precursor protein cleaving enzyme 1 (BACE1). BACE1 inhibitors reverse neuronal loss and cognitive decline in animal models of AD.
View Article and Find Full Text PDFAlthough the cause of Alzheimer's disease (AD) is unknown, glial-induced neuroinflammation is an early symptom. Familial AD is caused by increases in amyloid-beta (Aβ) peptide, particularly soluble oligomeric (oAβ), considered a proximal neurotoxin and neuroinflammatory stimuli. APOE4, a naturally occurring genotype of APOE, is the greatest genetic risk factor for AD; increasing risk up to 12-fold compared to APOE3 and APOE2.
View Article and Find Full Text PDFChronic glial activation and neuroinflammation induced by the amyloid-β peptide (Aβ) contribute to Alzheimer's disease (AD) pathology. APOE4 is the greatest AD-genetic risk factor; increasing risk up to 12-fold compared to APOE3, with APOE4-specific neuroinflammation an important component of this risk. This editorial review discusses the role of APOE in inflammation and AD, via a literature review, presentation of novel data on Aβ-induced neuroinflammation, and discussion of future research directions.
View Article and Find Full Text PDF