Since the SARS-CoV-2 Omicron virus has gained dominance worldwide, its continual evolution with unpredictable mutations and patterns has revoked all authorized immunotherapeutics. Rapid viral evolution has also necessitated several rounds of vaccine updates in order to provide adequate immune protection. It remains imperative to understand how Omicron evolves into different subvariants and causes immune escape as this could help reevaluate the current intervention strategies mostly implemented in the clinics as emergency measures to counter the pandemic and, importantly, develop new solutions.
View Article and Find Full Text PDFEmerg Microbes Infect
December 2023
The HIV-1 gp41 N-heptad repeat (NHR) region of the prehairpin intermediate, which is transiently exposed during HIV-1 viral membrane fusion, is a validated clinical target in humans and is inhibited by the Food and Drug Administration (FDA)-approved drug enfuvirtide. However, vaccine candidates targeting the NHR have yielded only modest neutralization activities in animals; this inhibition has been largely restricted to tier-1 viruses, which are most sensitive to neutralization by sera from HIV-1-infected individuals. Here, we show that the neutralization activity of the well-characterized NHR-targeting antibody D5 is potentiated >5,000-fold in TZM-bl cells expressing FcγRI compared with those without, resulting in neutralization of many tier-2 viruses (which are less susceptible to neutralization by sera from HIV-1-infected individuals and are the target of current antibody-based vaccine efforts).
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFThe COVID-19 pandemic is a stark reminder of the heavy toll that emerging infectious diseases (EIDs) with epidemic and pandemic potential can inflict. Vaccine development, scale-up, and commercialization is a long, expensive, and risky enterprise that requires substantial upfront planning and offers no guarantee of success. EIDs are a particularly challenging target for global health preparedness, including for vaccine development.
View Article and Find Full Text PDFSeasonal influenza vaccines lack efficacy against drifted or pandemic influenza strains. Developing improved vaccines that elicit broader immunity remains a public health priority. Immune responses to current vaccines focus on the haemagglutinin head domain, whereas next-generation vaccines target less variable virus structures, including the haemagglutinin stem.
View Article and Find Full Text PDFFiloviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa.
View Article and Find Full Text PDFHuman cytomegalovirus (HCMV) can cause serious morbidity/mortality in transplant patients, and congenital HCMV infection can lead to birth defects. Developing an effective HCMV vaccine is a high medical priority. One of the challenges to the efforts has been our limited understanding of the viral antigens important for protective antibodies.
View Article and Find Full Text PDFHuman immunodeficiency virus (HIV), the etiologic agent that causes AIDS, is the fourth largest killer in the world today. Despite the remarkable achievements in development of anti-retroviral therapies against HIV, and the recent advances in new prevention technologies, the rate of new HIV infections continue to outpace efforts on HIV prevention and control. Thus, the development of a safe and effective vaccine for prevention and control of AIDS remains a global public health priority and the greatest opportunity to eventually end the AIDS pandemic.
View Article and Find Full Text PDFAntibodies that neutralize infectivity of malaria sporozoites target the central repeat region of the circumsporozoite (CS) protein, which in Plasmodium falciparum is comprised primarily of 30-40 tandem NANP tetramer repeats. We evaluated immunogenicity of an alum-adsorbed (NANP)(6) peptide conjugated to an outer membrane protein complex (OMPC) derived from Neisseria meningitidis, a carrier protein used in a licensed Haemophilus influenzae pediatric vaccine. Mice immunized with (NANP)(6)-OMPC adsorbed to Merck's alum adjuvant (MAA), with or without Iscomatrix® as co-adjuvant, developed high levels of anti-repeat peptide antibody that inhibited in vitro invasion of human hepatoma cells by transgenic P.
View Article and Find Full Text PDFMaternal immunity to human cytomegalovirus (HCMV) prior to conception is ~70% protective against congenital transmission and in utero infection of HCMV. Both functional antibodies capable of neutralizing virus and effective T-cells are believed to be important for the protection. Previous HCMV vaccines have rarely been shown able to induce neutralizing antibody titers comparable to those seen in naturally infected HCMV seropositive subjects.
View Article and Find Full Text PDFIt has been suggested that poor immunogenicity may explain the lack of vaccine efficacy in preventing or controlling HIV infection in the Step trial. To investigate this issue we vaccinated eight Indian rhesus macaques with a trivalent replication-incompetent adenovirus serotype 5 vaccine expressing SIV Gag, Pol, and Nef using a regimen similar to that employed in the Step trial. We detected broad vaccine-induced CD8(+) (2-7 pool-specific responses) and CD4(+) (5-19 pool-specific responses) T-cell responses in IFN-γ ELISPOT assays at one week post-boost using fresh PBMC.
View Article and Find Full Text PDFOne limitation in the development of an improved cellular response needed for an effective HIV-vaccine is the inability to induce robust effector T-cells capable of suppressing a heterologous challenge. To improve cellular immune responses, we examined the ability of an optimized DNA vaccine to boost the cellular immune responses induced by a highly immunogenic Ad5 prime. Five Chinese rhesus macaques received pVax encoding consensus (con) gag/pol/env intramuscularly (IM) with electroporation followed by the Merck Ad5 gag/pol/nef vaccine.
View Article and Find Full Text PDFThe Step Trial showed that the MRKAd5 HIV-1 subtype B Gag/Pol/Nef vaccine did not protect men from HIV infection or reduce setpoint plasma viral RNA (vRNA) levels but, unexpectedly, it did modestly enhance susceptibility to HIV infection in adenovirus type 5 (Ad5)-seropositive, uncircumcised men. As part of the process to understand the results of the Step Trial, we designed a study to determine whether rhesus macaques chronically infected with a host-range mutant Ad5 (Ad5hr) and then immunized with a replication defective Ad5 SIVmac239 Gag/Pol/Nef vaccine were more resistant or susceptible to SIV infection than unimmunized rhesus macaques challenged with a series of escalating dose penile exposures to SIVmac 251. The Ad5 SIV vaccine induced CD8(+) T cell responses in 70% of the monkeys, which is similar to the proportion of humans that responded to the vaccine in the Step Trial.
View Article and Find Full Text PDFThe incidence of invasive pneumococcal disease (IPD), caused by the approximately 91 serotypes of Streptococcus pneumoniae (PN), varies geographically and temporally as a result of changing epidemiology and vaccination patterns as well as due to regional measurement differences. Prevnar(®) (Pfizer), the first licensed pneumococcal conjugate vaccine (PCV), comprises polysaccharides (PS) from 7 serotypes conjugated to the mutant diphtheria toxin carrier protein, CRM197. In the United States and elsewhere, this vaccine has been highly efficacious in reducing the incidence of IPD caused by vaccine serotypes, however, the incidence of non-vaccine serotypes (e.
View Article and Find Full Text PDFUnlabelled: T cell directed HIV vaccines are based upon the induction of CD8+ T cell memory responses that would be effective in inhibiting infection and subsequent replication of an infecting HIV-1 strain, a process that requires a match or near-match between the epitope induced by vaccination and the infecting viral strain. We compared the frequency and specificity of the CTL epitope responses elicited by the replication-defective Ad5 gag/pol/nef vaccine used in the Step trial with the likelihood of encountering those epitopes among recently sequenced Clade B isolates of HIV-1. Among vaccinees with detectable 15-mer peptide pool ELISpot responses, there was a median of four (one Gag, one Nef and two Pol) CD8 epitopes per vaccinee detected by 9-mer peptide ELISpot assay.
View Article and Find Full Text PDFWe analyzed HIV-1 genome sequences from 68 newly infected volunteers in the STEP HIV-1 vaccine trial. To determine whether the vaccine exerted selective T cell pressure on breakthrough viruses, we identified potential T cell epitopes in the founder sequences and compared them to epitopes in the vaccine. We found greater distances to the vaccine sequence for sequences from vaccine recipients than from placebo recipients.
View Article and Find Full Text PDFPurpose Of Review: To consider how nonhuman primate (NHP) model systems can best contribute to HIV vaccine development.
Recent Findings: We review the traditional roles of NHP model systems in vaccine development and compare this with how NHP models have been used in HIV vaccine research and development. Comparisons of the immune responses elicited by cellular immune response-inducing vaccines in macaques and humans illustrate the value of primate studies for the relative ranking of HIV vaccine concepts for their likely immunogenicity in humans.
Following the disappointing outcome of the phase IIb test-of-concept step study in which Merck's adenovirus type 5 (Ad5) HIV-1 clade B gag/pol/nef vaccine failed to demonstrate efficacy in HIV high-risk individuals, an extensive review of the trial and preclinical studies which supported the trial is ongoing. One point of interest is how well preclinical nonhuman primate immunogenicity studies predicted what was observed in humans. Here we compare the HIV-1-specific cellular immune responses elicited in nonhuman primates and human clinical trial subjects to several HIV-1 vaccine candidates.
View Article and Find Full Text PDFBoth Clostridium difficile and Staphylococcus aureus asymptomatically colonize a significant percentage of humans, particularly during the first year of life. The epidemiology of both has been and continues to be quite dynamic; presently, we are in the midst of epidemics of infections by C. difficile and S.
View Article and Find Full Text PDFInfluenza HA is the primary target of neutralizing antibodies during infection, and its sequence undergoes genetic drift and shift in response to immune pressure. The receptor binding HA1 subunit of HA shows much higher sequence variability relative to the metastable, fusion-active HA2 subunit, presumably because neutralizing antibodies are primarily targeted against the former in natural infection. We have designed an HA2-based immunogen using a protein minimization approach that incorporates designed mutations to destabilize the low pH conformation of HA2.
View Article and Find Full Text PDFDNA vaccines have undergone important enhancements in their design, formulation, and delivery process. Past literature supports that DNA vaccines are not as immunogenic in nonhuman primates as live vector systems. The most potent recombinant vector system for induction of cellular immune responses in macaques and humans is adenovirus serotype 5 (Ad5), an important benchmark for new vaccine development.
View Article and Find Full Text PDF