Publications by authors named "Shivendra Tenguria"

Unlabelled: The cellular junctional architecture remodeling by adhesion protein-heat shock protein 60 (LAP-Hsp60) interaction for () passage through the epithelial barrier is incompletely understood. Here, using the gerbil model, permissive to internalin (Inl) A/B-mediated pathways like in humans, we demonstrate that crosses the intestinal villi at 48 h post-infection. In contrast, the single isogenic ( or Δ) or double (Δ) mutant strains show significant defects.

View Article and Find Full Text PDF

Listeria adhesion protein (LAP) is a secreted acetaldehyde alcohol dehydrogenase (AdhE) that anchors to an unknown molecule on the Listeria monocytogenes (Lm) surface, which is critical for its intestinal epithelium crossing. In the present work, immunoprecipitation and mass spectrometry identify internalin B (InlB) as the primary ligand of LAP (K ∼ 42 nM). InlB-deleted and naturally InlB-deficient Lm strains show reduced LAP-InlB interaction and LAP-mediated pathology in the murine intestine and brain invasion.

View Article and Find Full Text PDF

Intracellular sensing of stress and danger signals initiates inflammatory innate immune responses by triggering inflammasome assembly, caspase-1 activation and pyroptotic cell death as well as the release of interleukin 1β (IL-1β), IL-18 and danger signals. NLRP3 broadly senses infectious patterns and sterile danger signals, resulting in the tightly coordinated and regulated assembly of the NLRP3 inflammasome, but the precise mechanisms are incompletely understood. Here, we identified NLRP11 as an essential component of the NLRP3 inflammasome in human macrophages.

View Article and Find Full Text PDF

Environmental cues promote microbial biofilm formation and physiological and genetic heterogeneity. In food production facilities, biofilms produced by pathogens are a major source for food contamination; however, the pathogenesis of biofilm-isolated sessile cells is not well understood. We investigated the pathogenesis of sessile Listeria monocytogenes (Lm) using cell culture and mouse models.

View Article and Find Full Text PDF

Rapid detection of live pathogens is of paramount importance to ensure food safety. At present, nucleic acid-based polymerase chain reaction and antibody-based lateral flow assays are the primary methods of choice for rapid detection, but these are prone to interference from inhibitors, and resident microbes. Moreover, the positive results may neither assure virulence potential nor viability of the analyte.

View Article and Find Full Text PDF

Probiotic bacteria reduce the intestinal colonization of pathogens. Yet, their use in preventing fatal infection caused by foodborne Listeria monocytogenes (Lm), is inconsistent. Here, we bioengineered Lactobacillus probiotics (BLP) to express the Listeria adhesion protein (LAP) from a non-pathogenic Listeria (L.

View Article and Find Full Text PDF

The emergence of bacterial resistance to therapeutic antibiotics limits options for treatment of common microbial diseases. Subinhibitory antibiotics dosing, often aid in the emergence of resistance, but its impact on pathogen's physiology and pathogenesis is not well understood. Here we investigated the effect of tunicamycin, a cell wall teichoic acid (WTA) biosynthesis inhibiting antibiotic at the subinhibitory dosage on and physiology, antibiotic cross-resistance, biofilm-formation, and virulence.

View Article and Find Full Text PDF

Intestinal epithelial cells are the first line of defense against enteric pathogens, yet bacterial pathogens, such as Listeria monocytogenes, can breach this barrier. We show that Listeria adhesion protein (LAP) induces intestinal epithelial barrier dysfunction to promote bacterial translocation. These disruptions are attributed to the production of pro-inflammatory cytokines TNF-α and IL-6, which is observed in mice challenged with WT and isogenic strains lacking the surface invasion protein Internalin A (ΔinlA), but not a lap mutant.

View Article and Find Full Text PDF

Helicobacter pylori portrays a classical paradigm of persistent bacterial infections. A well balanced homeostasis of bacterial effector functions and host responses is purported to be the key in achieving long term colonization in specific hosts. H.

View Article and Find Full Text PDF

The Helicobacter pylori gene JHP0940 has been shown to encode a serine/threonine kinase which can induce cytokines in gastric epithelial cells relevant to chronic gastric inflammation. Here we demonstrate that JHP0940 can be secreted by the bacteria, triggers apoptosis in cultured mouse macrophages and acts as an auto-phosphorylating tyrosine kinase. Recombinant JHP0940 protein was found to decrease the viability of RAW264.

View Article and Find Full Text PDF

HP0986 protein of Helicobacter pylori has been shown to trigger induction of proinflammatory cytokines (IL-8 and TNF-α) through the activation of NF-κB and also to induce Fas mediated apoptosis of human macrophage cells (THP-1). In this study, we unravel mechanistic details of the biological effects of this protein in a murine macrophage environment. Up regulation of MCP-1 and TNF-α in HP0986-induced RAW 264.

View Article and Find Full Text PDF

Background: The envisaged roles and partly understood functional properties of Helicobacter pylori protein HP0986 are significant in the context of proinflammatory and or proapoptotic activities, the two important facilitators of pathogen survival and persistence. In addition, sequence analysis of this gene predicts a restriction endonuclease function which remained unknown thus far. To evaluate the role of HP0986 in gastric inflammation, we studied its expression profile using a large number of clinical isolates but a limited number of biopsies and patient sera.

View Article and Find Full Text PDF

Helicobacter pylori is a well known inhabitant of human stomach which is linked to peptic ulcer disease and gastric adenocarcinoma. It was recently shown in several studies that H. pylori can be harnessed as a surrogate marker of human migration and that its population structure and stratification patterns exactly juxtapose to those of Homo sapiens.

View Article and Find Full Text PDF